您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 切线长定理(共33张PPT)
新课学习.OAL切线的性质定理:圆的切线垂直于过切点的半径几何应用:∵L是⊙O的切线,∴OA⊥LA.OL经过半径的外端并且垂直于这条半径的直线是圆的切线.几何应用:2.与半径垂直.1.经过半径的外端;OA是⊙O的半径OA⊥l于Al是⊙O的切线.切线的判定定理:O。ABP过圆外一点可以引圆的几条切线?尺规作图:过⊙O外一点作⊙O的切线O·PABO在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长。·OPAB切线与切线长是一回事吗?它们有什么区别与联系呢?··切线:不可以度量。切线长:可以度量。比一比BOABP思考:已知⊙O切线PA、PB,A、B为切点,把圆沿着直线OP对折,你能发现什么?12请证明你所发现的结论。APOBPA=PB∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB试用文字语言叙述你所发现的结论证一证PA、PB分别切⊙O于A、BPA=PB∠OPA=∠OPB从圆外一点引圆的两条切线,它们的切线长相等。几何语言:反思:切线长定理为证明线段相等、角相等提供新的方法OPAB切线长定理APOB若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴△PAB是等腰三角形,PM为顶角的平分线∴OP垂直平分ABM试一试APO。B若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.CA=CB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴PC=PC∴△PCA≌△PCB∴AC=BCC探究:PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OA⊥PA,OB⊥PB,AB⊥OP(3)写出图中所有相等的线段(2)写出图中与∠OAC相等的角∠OAC=∠OBC=∠APC=∠BPCOA=OB=OD=OE,PA-=PB,AC=BC,AE=BE已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12CM,求△PEF的周长。EAQPFBO易证EQ=EA,FQ=FB,PA=PB∴PE+EQ=PA=12cmPF+FQ=PB=PA=12cm∴周长为24cm例题1变式:如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求△PCD的周长.(2)如果∠P=46°,求∠COD的度数C·OPBDAE例2、如图,四边形ABCD的边AB、BC、CD、DA和圆⊙O分别相切于点L、M、N、P,求证:AD+BC=AB+CDDLMNABCOP证明:由切线长定理得∴AL=AP,LB=MB,NC=MC,DN=DP∴AL+LB+NC+DN=AP+MB+MC+DP即AB+CD=AD+BC补充:圆的外切四边形的两组对边的和相等.例题2。PBAO(3)连结圆心和圆外一点(2)连结两切点(1)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。想一想例3△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.解:设AF=x(cm),BD=y(cm),CE=z(cm)∴AF=4(cm),BD=5(cm),CE=9(cm).∵⊙O与△ABC的三边都相切∴AF=AE,BD=BF,CE=CD则有x+y=9y+z=14x+z=13解得x=4y=5z=9例题3·ABCEDFO如图,Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,⊙O为Rt△ABC的内切圆.求:Rt△ABC的内切圆的半径r.设AD=x,BE=y,CE=r∵⊙O与Rt△ABC的三边都相切∴AD=AF,BE=BF,CE=CD则有x+r=by+r=ax+y=c解:设Rt△ABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。解得r=a+b-c2设Rt△ABC的直角边为a、b,斜边为c,则Rt△ABC的内切圆的半径r=或r=a+b-c2aba+b+c变式·OABCDEFOABCDE思考:如图,AB是⊙O的直径,AD、DC、BC是切线,点A、E、B为切点,若BC=9,AD=4,求OE的长.例1、已知:P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,BC是直径。求证:AC∥OPPACBDO例题讲解切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。∵PA、PB分别切⊙O于A、B∴PA=PB,∠OPA=∠OPBOP垂直平分AB切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。课堂小结课堂小结课堂小结课堂小结练习.如图,△ABC中,∠C=90º,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=12,AD=8,求⊙O的半径r.OEBDCAF·BDEFOCA如图,△ABC的内切圆的半径为r,△ABC的周长为l,求△ABC的面积S.解:设△ABC的内切圆与三边相切于D、E、F,连结OA、OB、OC、OD、OE、OF,则OD⊥AB,OE⊥BC,OF⊥AC.∴S△ABC=S△AOB+S△BOC+S△AOC=AB·OD+BC·OE+AC·OF21212121=l·r设△ABC的三边为a、b、c,面积为S,则△ABC的内切圆的半径r=2Sa+b+c三角形的内切圆的有关计算思考·ABCEDFO如图,Rt△ABC中,∠C=90°,BC=3,AC=4,⊙O为Rt△ABC的内切圆.(1)求Rt△ABC的内切圆的半径.(2)若移动点O的位置,使⊙O保持与△ABC的边AC、BC都相切,求⊙O的半径r的取值范围。设AD=x,BE=y,CE=r∵⊙O与Rt△ABC的三边都相切∴AD=AF,BE=BF,CE=CD则有x+r=4y+r=3x+y=5解:(1)设Rt△ABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。解得r=1在Rt△ABC中,BC=3,AC=4,∴AB=5由已知可得四边形ODCE为正方形,∴CD=CE=OD∴Rt△ABC的内切圆的半径为1。(2)如图所示,设与BC、AC相切的最大圆与BC、AC的切点分别为B、D,连结OB、OD,则四边形BODC为正方形。·ABODC∴OB=BC=3∴半径r的取值范围为0<r≤3几何问题代数化是解决几何问题的一种重要方法。基础题:1.既有外接圆,又内切圆的平行四边形是______.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_______.3.⊙O是边长为2cm的正方形ABCD的内切圆,EF切⊙O于P点,交AB、BC于E、F,则△BEF的周长是_____.EFHG正方形22cm2cm下课了!下课了!
本文标题:切线长定理(共33张PPT)
链接地址:https://www.777doc.com/doc-5057090 .html