您好,欢迎访问三七文档
7切线长定理1.理解切线长的概念,掌握切线长定理.2.学会运用切线长定理解有关问题.3.通过对例题的分析,提高综合运用知识解题的能力,感受数形结合的思想.BA1.如何过⊙O外一点P画出⊙O的切线?2.这样的切线能画出几条?如下左图,借助三角板,我们可以画出PA是⊙O的切线.3.如果∠P=50°,求∠AOB的度数.50°130°OPOABP.思考:已画出切线PA,PB,A,B为切点,则∠OAP=90°,连接OP,可知A,B除了在⊙O上,还在怎样的圆上?O·PABO过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长.·OPAB切线与切线长是一回事吗?它们有什么区别与联系呢?切线长概念切线和切线长是两个不同的概念:1.切线是一条与圆相切的直线,不能度量;2.切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.OPAB比一比:切线与切线长OABP12思考:已知⊙O切线PA,PB,A,B为切点,把圆沿着直线OP对折,你能发现什么?折一折请证明你所发现的结论.APOBPA=PB∠OPA=∠OPB证明:连接OA,OB.∵PA,PB是⊙O的切线,∴OA⊥PA,OB⊥PB.即∠OAP=∠OBP=90°.∵OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP(HL)∴PA=PB,∠OPA=∠OPB.证一证切线长定理∵PA,PB分别与⊙O相切于点A,B,∴PA=PB.过圆外一点所画的圆的两条切线长相等.几何语言:OPAB反思:切线长定理为证明线段相等、角相等提供新的方法PA=PB∠OPA=∠OPBAPOB若连接两切点A,B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分ABM证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB,∠OPA=∠OPB.∴△PAB是等腰三角形,PM为顶角的平分线.∴OP垂直平分AB.试一试APO.B若延长PO交⊙O于点C,连接CA,CB,你又能得出什么新的结论?并给出证明.CA=CB证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB,∠OPA=∠OPB.又∵PC=PC.∴△PCA≌△PCB,∴BC=AC.C.PBAO(3)连接圆心和圆外一点(2)连接两切点(1)分别连接圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形.想一想【例1】如图,四边形ABCD的边AB,BC,CD,DA和⊙O分别相切于点L,M,N,P,求证:AD+BC=AB+CD.证明:由切线长定理得AL=AP,LB=MB,NC=MC,DN=DP,∴AP+MB+MC+DP=AL+LB+NC+DN,即AD+BC=AB+CD,补充:圆的外切四边形的两组对边的和相等.DLMNABCOP【例题】【例2】△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=9cm,BC=14cm,CA=13cm,求AF,BD,CE的长.【解析】设AF=x,则AE=x∴CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC可得13-x+9-x=14,解得x=4.∴AF=4cm,BD=5cm,CE=9cm.【例题】1.(珠海·中考)如图,PA,PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB等于()A.60°B.90°C.120°D.150°C2.(杭州·中考)如图,正三角形的内切圆半径为1,那么这个正三角形的边长为()A.2B.3C.D.323【解析】选D.如图所示,连接OA,OB,则三角形AOB是直角三角形,且∠OBA=90°,∠OAB=30°,又因为内切圆半径为1,利用勾股定理求得AB=,那么这个正三角形的边长为.323AB3.已知:如图,PA,PB是⊙O的切线,切点分别是A,B,Q为⊙O上一点,过Q点作⊙O的切线,交PA,PB于E,F点,已知PA=12cm,求△PEF的周长.【解析】易证EQ=EA,FQ=FB,PA=PB.∴PE+EQ=PA=12cm,PF+FQ=PB=PA=12cm.∴周长为24cm.F切线(长)的几个性质:(1)切线和圆只有一个公共点.(2)切线和圆心的距离等于圆的半径.(3)切线垂直于过切点的半径(4)切线长定理.通过本课时的学习,需要我们掌握:我之所以比笛卡儿看得远些,是因为我站在巨人的肩上.—牛顿
本文标题:切线长定理
链接地址:https://www.777doc.com/doc-5057091 .html