您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 数学:《11.3 角的平分线的性质》课件一(人教版八年级上)
角的平分线的性质如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?ADBCE探究证明:在△ACD和△ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)∴△ACD≌△ACB(SSS)∴∠CAD=∠CAB(全等三角形的对应边相等)∴AC平分∠DAB(角平分线的定义)ADBCE证明根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器)OABCENOMCENM方法1〉平分平角∠AOB2〉通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?3〉结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法.ABOCD练习探究角平分线的性质将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?猜想:角的平分线上的点到角的两边的距离相等.探究证明:∵OC平分∠AOB(已知)∴∠1=∠2(角平分线的定义)∵PD⊥OA,PE⊥OB(已知)∴∠PDO=∠PEO(垂直的定义)在△PDO和△PEO中∠PDO=∠PEO(已证)∠1=∠2(已证)OP=OP(公共边)∴△PDO≌△PEO(AAS)∴PD=PE(全等三角形的对应边相等)PAOBCED12已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E求证:PD=PE证明角平分线上的点到角两边的距离相等.利用此性质怎样书写推理过程?∵∠1=∠2,PD⊥OA,PE⊥OB(已知)∴PD=PE(全等三角形的对应边相等)PAOBCED12如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF求证:CF=EBACDEBF分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF≌Rt△EDB.现已有一个条件BD=DF(斜边相等),还需要我们找什么条件DC=DE(因为角的平分线的性质)再用HL证明.例题定理角平分线上的点到这个角的两边距离相等.∵OC是∠AOB的平分线,P是OC上任意一点PD⊥OA,PE⊥OB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).用尺规作角的平分线.OCB1A2PDE小结
本文标题:数学:《11.3 角的平分线的性质》课件一(人教版八年级上)
链接地址:https://www.777doc.com/doc-5061451 .html