您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 数据通信与网络 > 初一数学追及问题和相遇问题列方程的技巧
初一数学追及问题和相遇问题列方程的技巧行程问题在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇问题。相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。相离问题两个运动着的动体,从同一地点相背而行。若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。它与相遇问题类似,只是运动的方向有所改变。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。追及问题两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。基本公式有:追及(或领先)的路程÷速度差=追及时间速度差×追及时间=追及(或领先)的路程追及(或领先)的路程÷追及时间=速度差要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)常用公式:行程问题基本恒等关系式:速度×时间=路程,即S=vt.行程问题基本比例关系式:路程一定的情况下,速度和时间成反比;时间一定的情况下,路程和速度成正比;速度一定的情况下,路程和时间成正比。相遇追及问题中符号法则:相向运动,速度取和;同向运动,速度取差。流水行船问题中符号法则:促进运动,速度取和;阻碍运动,速度取差。程问题常用比例关系式:路程比=速度比×时间比,即S1/S2=v1/v2×t1/t2电梯运行规律:能看到的电梯级数=(人速+电梯速度)×顺电梯运动所需时间能看到的电梯级数=(人速—电梯速度)×逆电梯运动所需时间2v1v2往返运动问题核心公式:往返平均速度=-------(其中v1和v2分别表示往返的速)v1+v23S1+S2两次相遇问题核心公式:单岸型S=-------;两岸型S=3S1-S2(S表示两岸的距离)2相向而行:相遇时间=距离÷速度之和相背而行:相背距离=速度之和×时间注意:同向而行追及时速度慢的在前,快的在后。在环形跑道上,速度快的在前,慢的在后。环形运动的追击问题和相遇问题:若同向同起点运动,第一次相遇时,速度快的比速度慢的多跑一圈;若相向同起点运动,第一次相遇时,两者路程和为一圈的长度。解决行程问题,常以速度为中心,路程和时间为两个基本点,善于抓住不变量列方程。对于有三个以上人或车同时参与运动的行程问题,在分析其中某两个的运动情况的同时,还要弄清此时此刻另外的人或车处于什么位置,他(它)与前两者有什么关系。分析复杂的行程问题时,最好画线段图帮助思考。理解并熟记下面的结论,对分析、解答复杂的行程问题是有好处的(3)甲的速度是a,乙的速度是b,在相同时间内,甲、乙一共行的At+bt=st=s/a+bS甲=a*t=a*s/a+bS乙=b*t=b*s/a+b封闭路线中的行程问题解决封闭路线中的行程问题,仍要抓住“路程=速度×时间”这个基本关系式,搞清路程、速度、时间三者之间的关系。封闭路线中的行程问题,可以转化为非封闭路线中的行程问题来解决。在求两个沿封闭路线相向运动的人或物体相遇次数时,还可以借助图示直观地解决。直线上的来回运动、钟表上的时针分针夹角问题,实质上也是封闭路线中的行程问题。每个小时内时针与分针重合一次垂直两次。流水行船问题顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。解答时要注意各种速度的涵义及它们之间的关系。已知船的顺水速度和逆水速度,求船的静水速度及水流速度。解答这类问题,一般要掌握下面几个数量关系:船速:在静水中的速度水速:河流中水流动的速度顺水船速:船在顺水航行时的速度逆水速度:船在逆水航行时的速度船速+水速=顺水船速船速-水速=逆水船速(顺水船速+逆水船速)÷2=船速(顺水船速-逆水船速)÷2=水速顺水船速=船速+水速=逆水船速+水速×2过桥问题一列火车通过一座桥或者是钻过一个隧道,研究其车长、车速、桥长或隧道道长,过桥或钻隧道的时间等关系的一类应用题。解答这类应用题,除了根据速度、时间、路程三量之间的关系进行计算外,还必意到车长,即通过的路程等于桥长或隧道长加车长。基本公式有:桥长+车长=路程平均速度×过桥时间=路程过桥时间=路程÷平均速度奥数行程问题解题方法分类:1、信心不足有不少孩子往往一拿到行程问题的题目心里就发怵,没有信心去把题目解决。究其原因,主要是他们在平时做行程问题时选题的难度不适当,对一些基本的题目没能做到熟练掌握。而现在学生们自己从一些参考书上找的练习题难度不一、类型各异。这样的话,孩子自己很难在短期内把行程问题掌握。于是就造成了这样一种现象:感觉学了很长时间,也还是有很多题目不会做。时间一长,自然孩子们就很难建立起足够的自信心。因此,同学们在做行程问题时一定不要盲目的做那些难度很大的题目,从简单的常规题目开始,一步一脚一印,逐步建立自己的信心,相信自己一定能够攻克行程问题。作为家长,在指导孩子学习的时候要多鼓励他们,千万不能急于求成,要谨慎的给孩子安排一些难度大的题目。不要急于给孩子安排做一些竞赛题或导引上的题目。一定要根据自己孩子的程度循序渐进的增加难度。2、耐心不够行程问题很多题目的文字叙述比较其他题目要普遍的长一些,这样对于小学生来讲,去理解题意也就增加了难度。因而多数孩子都不愿读长题,这样首先从心理上就对题目产生了厌倦感和恐惧感。那么势必造成对题目理解的不够,分析的不透彻。这就是因为孩子在做题时缺乏足够的耐心,急于求成。而做行程问题最重要的前提恰恰是要把题意理解透彻,把过程分析清楚,把这前期工作做好了后,后面解题的过程也就会变得简单了。我们发现往往是老师把题目读完,把相应的过程给孩子分析完之后,他们自己很快就能找到解题的思路和方法。希望同学们在做题时一定要有耐心,一步一步安心思考,逐步把已知条件和所要求的未知条件建立联系。经过这么逐步分析,你一定会找到解题的方法的。家长在这时也可以慢慢提示着帮孩子理解题意,逐步培养他们分析题目的能力。3、习惯不良有一些孩子做题时不喜欢写步骤和过程,往往是只写答案。有的是写了几个简单的算式而没有相应的文字提示。例如这样一道题:甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。当他们第二次相遇时距离B地30千米。问AB两地的距离是多少?一道非常典型的迎面相遇问题。我们发现很多孩子都会解这道题,他们能够很快的列出算式。60×3-30=150(千米)但如果你要是问这个算式的含义,就有很多同学回答不上来了。他们往往只是记住了这个解题算式。原因还在于在平时的学习过程中过分重视算式和结果,而忽视了解题思路和方法的掌握。对老师在解题过程中做的分析和讲解没有理解充分,对一些关键的字眼没能做好记录。因而同学们在听课的过程中要注意记录老师对题目所做的文字分析,不明白的要及时询问老师,只有真正把老师所讲题目的解题思路搞懂了才能逐步掌握这类题目的解题方法。如果自己有新的想法,有更好的思路也一定要积极的和老师探讨,以确认方法的正确性。家长们在对孩子的学习进行监督时也不能只看孩子的解题结果,而是要问明白孩子所列算式的来龙去脉,鼓励孩子讲题给你听。相信这样对孩子的学习帮助会更大。4、做题时不喜欢画图其实,如果能把题目所叙述的过程表现出来,题目的难度自然就会大大降低。因为如果单纯凭空想象一些相遇或追及过程不仅很困难,也很容易出错,尤其是那些多人相遇或追及,多次相遇或追及那就更不可想象了。所以同学们平时做题时一定要养成画图的好习惯,这对你分析解题会起到很大的作用的。所以老师讲题过程中画的图大家一定要记录好。解行程问题的方法已知速度、时间、距离三个数量中的任何两个,求第三个数量的应用题,叫做行程问题。解答行程问题的关键是,首先要确定运动的方向,然后根据速度、时间和路程的关系进行计算。行程问题的基本数量关系是:速度×时间=路程路程÷速度=时间路程÷时间=速度行程问题常见的类型是:相遇问题,追及问题(即同向运动问题),相离问题(即相背运动问题)。(一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。小学数学教材中的行程问题,一般是指相遇问题。相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程(1)求两地间的距离例1两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。两车行驶路程之和,就是两地距离。56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。例2两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。例3甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。从开始走到第二次相遇,共用了小时。6A、B两地相距多少千米?(适于五年级程度)解:从开始走到第一次相遇,两人走的路程是一个AB之长;而到第二次相遇,两人走的路程总共就是3个AB之长(图35-1),这三个AB之长是:(5+4)×6=54(千米)所以,A、B两地相距的路程是:54÷3=18(千米)答略。例4两列
本文标题:初一数学追及问题和相遇问题列方程的技巧
链接地址:https://www.777doc.com/doc-5089884 .html