您好,欢迎访问三七文档
第四章三角函数总第1教时4.1-1角的概念的推广(1)教学目的:推广叫的概念,引入正角、负角、零角;象限角、坐标上的角的概念;终边相同角的表示方法。让学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义,以及相应的表示方法。从“射线绕其端点旋转而形成角”的过程,培养学生用运动变化的观点审视事物;通过与数(轴)的类比,理解“正角”“负角”“零角,让学生感受图形的对称美、运动美。教学重点:理解并掌握正角、负角、零角、象限角的定义;掌握总边相同角的表示方法及判定。教学难点:把终边相同角用集合和符号语言正确的表示出来。过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。二、角的概念的推广回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”讲解:“旋转”形成角(P4)突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于轴正半轴“正角”与“负角”——这是由旋转的方向所决定的。记法:角或可以简记成由于用“旋转”定义角之后,角的范围大大地扩大了。1(角有正负之分如:(=210((=(150((=(660(2(角可以任意大实例:体操动作:旋转2周(360(×2=720()3周(360(×3=1080()3(还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30(390((330(是第Ⅰ象限角300((60(是第Ⅳ象限角585(1180(是第Ⅲ象限角(2000(是第Ⅱ象限角等四、关于终边相同的角1.观察:390(,(330(角,它们的终边都与30(角的终边相同2.终边相同的角都可以表示成一个0(到360(的角与个周角的和390(=30(+360((330(=30((360(30(=30(+0×360(1470(=30(+4×360((1770(=30((5×360(3.所有与(终边相同的角连同(在内可以构成一个集合即:任何一个与角(终边相同的角,都可以表示成角(与整数个周角的和4.(P6例1)例1在0°到360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-120°;(2)640°;(3)-950°12′.解:(1)-120°=240°-360°,所以与-120°角终边相同的角是240°角,它是第三象限角;(2)640°=280°+360°,所以与640°角终边相同的角是280°角,它是第四象限角;(3)-950°12′=129°48′-3×360°,所以与-950°12′角终边相同的角是129°48′,它是第二象限角.(P5)五、小结:1(角的概念的推广,用“旋转”定义角角的范围的扩大2(“象限角”与“终边相同的角”六、作业:P7练习1、2、3、4习题1.41总第2课时4.1-2角的概念的推广(2)教学目的:进一步理解角的概念,能表示特殊位置(或给定区域内)的角的集合;能进行角的集合之间的交与并运算;讨论等分角所在象限问题。教学重点与难点:角的集合之间的交与并运算;判断等分角的象限。过程:复习、作业讲评.新课:例一、(P6例2)写出终边在y轴上的角的集合(用0°到360°的角表示).解:在0°到360°范围内,终边在y轴上的角有两个,即90°,270°角(图4-4).因此,所有与90°角终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z}={β|β=90°+180°+2k·180°,k∈Z}={β|β=90°+(2k+1)180°,k∈Z},于是,终边在y轴上的角的集合S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)180°,k∈Z}={β|β=90°+180°的偶数倍}∪{β|β=90°+180°的奇数倍}={β|β=90°+180°的整数倍}={β|β=90°+n·180°,n∈Z}.例二、(P6例3)、写出与下列各角终边相同的角的集合S,并把S中适合不等式-360o≤β720o的元素β写出来:(1)60o(2)-21o(3)363o14ˊ解:(1)S={β|β=60°+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是60°-1×360°=-300°,60°+0×360°=60°,60°+1×360°=420°.(2)-21°不是0°到360°的角,但仍可用上述方法来构成与-21°角终边相同的角的集合,即S={β|β=-21°+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是-21°+0×360°=-21°,-21°+1×360°=339°,-21°+2×360°=699°.(3)S={β|β=363°14′+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是363°14′-2×360°=-356°46′,363°14′-1×360°=3°14′,363°14′+0×360°=363°14′.例三、用集合表示:(1)第二象限的集合;(2)终边落在y轴右侧的角的集合。解:(1)因为在0o~360o范围内,第二象限角的范围为90oα0180o,而与每个α0角终边相同的角可记为αo+k360o,(k∈Z),故该范围内每个角适合90o+k360oα090o+k360o,(k∈Z)所以第二象限的集合为{α|-90o+k360oα90o+k360o,k∈Z}。(2)因为在-180o~180o范围内,y轴右侧的角的范围为-90oα0+90o,而与每个α0角终边相同的角可记为αo+k360o,(k∈Z),故该范围内每个角适合-90o+k360oα0180o+k360o,(k∈Z)所以第二象限的集合为{α|90o+k360oα180o+k360o,k∈Z}。说明:特殊位置(或给定区域内)的角的集合的表示过步骤:1)在0o~360o范围内,找到特殊位置(或给定区域内)的角并记为α0;然后写出与上述终边相同角的集合(二)习题4.1.5(1)已知α是锐角,那么2α是()(A)第一象限角.(B)第二象限角.(C)小于180o的角.(D)不大于直角的角.练习:课本第7页练习5,习题4.1.5(2)作业:习题4.1.3(2)、(4)、(6)、(8),4总第3教时4.2-1弧度制(1)教学目的:理解1弧度的角及弧度的定义,掌握弧度制与角度制互化,并能熟练的进行角度与弧度的换算;熟记一些的数角的弧度数。并进而建立角的集合与实数集一一对应关系的概念。通过弧度制的学习,使学生认识到角度与弧度都是度量角的制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下角的加、减运算可以象十进制一样进行,而不需要进行角度制与十进制之间的转化,化简了六十进制给角的加减、运算带来的诸多不便,体现了弧度制的简洁美。教学重点:使学生理解弧度制的意义,能正确地进行弧度与角度的换算。教学难点:1、弧度制的概念及其与角度的关系,2、角的集合与实数集一一对应关系。过程:一、回忆(复习)度量角的大小第一种单位制—角度制的定义。二、提出课题:弧度制—另一种度量角的单位制,它的单位是rad读作弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。如图:(AOB=1rad,(AOC=2rad周角=2(rad正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0;角(的弧度数的绝对值(为弧长,为半径)用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)用角度制和弧度制来度量任一非零角,单位不同,量数也不同。三、角度制与弧度制的换算抓住:360(=2(rad∴180(=(rad∴1(=例一把化成弧度解:∴例二把化成度解:注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;2.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radsin(表示(rad角的正弦3.一些特殊角的度数与弧度数的对应值应该记住(见课本P9表)4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。任意角的集合实数集R四、练习(P11练习1、2)例三用弧度制表示:1(终边在轴上的角的集合2(终边在轴上的角的集合3(终边在坐标轴上的角的集合解:1(终边在轴上的角的集合2(终边在轴上的角的集合3(终边在坐标轴上的角的集合五、小结:1.弧度制定义2.与弧度制的互化六、作业:课本P11练习3、4P12习题4.22、3总第4教时4.2-2弧度制(2)教学目的:加深学生对弧度制的理解,理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活的在具体应用中运用弧度制解决具体的问题。通过弧度制与角度制的比较使学生认识到映入弧度制的优越性,激发在学生的学习兴趣和求知欲望,培养良好的学习品质。教学重点:弧度制下的弧长公式,扇形面积公式及其应用。教学难点:弧度制的简单应用。1、过程:一、复习:弧度制的定义,它与角度制互化的方法。口答二、由公式:比相应的公式简单弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积例一(课本P10例三)利用弧度制证明扇形面积公式其中是扇形弧长,是圆的半径。证:如图:圆心角为1rad的扇形面积为:弧长为的扇形圆心角为∴比较这与扇形面积公式要简单例二直径为20cm的圆中,求下列各圆心所对的弧长⑴⑵解:⑴:⑵:∴例三如图,已知扇形的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积。解:设扇形的半径为r,弧长为,则有∴扇形的面积例四计算解:∵∴∴例五将下列各角化成0到的角加上的形式⑴⑵解:例六求图中公路弯道处弧AB的长(精确到1m)图中长度单位为:m解:∵∴三、练习:P116、7、8、9、10四、作业:课本P11-12P12-13习题4.25—14总第5教时4.3-1任意角的三角函数(定义)教学目的:生掌握任意角的三角函数的定义,熟悉三角函数的定义域及确定方法;理解(角与(=2k(+((k(Z)的同名三角函数值相等的道理。重点难点:三角函数的定义域及确定方法,终边相同角的同名三角函数值相等。过程:一、提出课题:讲解定义:设(是一个任意角,在(的终边上任取(异于原点的)一点P(x,y)则P与原点的距离(见图4-10)2.比值叫做(的正弦记作:比值叫做(的余弦记作:比值叫做(的正切记作:比值叫做(的余切记作:比值叫做(的正割记作:比值叫做(的余割记作:注意突出几个问题:①角是“任意角”,当(=2k(+((k(Z)时,(与(的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。②实际上,如果终边在坐标轴上,上述定义同样适用。(下面有例子说明)③三角函数是以“比值”为函数值的函数④,而x,y的正负是随象限的变化而不同,故三角函数的符号应由象限确定(今后将专题研究)⑤定义域:二、例题:例一已知(的终边经过点P(2,(3),求(的六个三角函数值解:∴sin(=(cos(=tan(=(cot(=(sec(=csc(=(例二求下列各角的六个三角函数值⑴0⑵(⑶⑷解:⑴⑵⑶的解答见P16-17⑷当(=时∴sin=1cos=0tan不存在cot=0sec不存在csc=1例三求函数的值域解:定义域:cosx(0∴x的终边不在x轴上又∵tanx(0∴x的终边不在y轴上∴当x是第Ⅰ象限角时,cosx=|cosx|tanx=|tanx|∴y=2…………Ⅱ…………,|cosx|=(cosx|tanx|=(tanx∴y=(2…………ⅢⅣ………,|cosx
本文标题:三角函数教案设计
链接地址:https://www.777doc.com/doc-5092201 .html