您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 几种重要的数学思想方法
1几种重要的数学思想方法韩晓荣数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。《数学课程标准》在对初中阶段的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。一、化归思想,所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。我们也常把它称之为“转化思想”。例如:解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。二、数形结合的思想方法数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现。三、分类讨论的思想方法在渗透分类讨论思想的过程中,我认为首要的是分类。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在《平面图形的认识》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类。这种思想方法主要可以避免漏解、错解。四、方程思想方程思想指借助解方程来求出未知量的一种解题策略。我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。例如利用一元一次方程,一元二次方程能解决好多实际问题。五、从特殊到一般的思想方法2从特殊到一般的数学思想方法,即先观察一些特殊的事例,然后分析它们共同具有的特征,作出一般的结论。如用字母表示数,学生始终认为“-a是负数”,“两个数的和大于其中任何一个加数”等,可以给a取不同的值,从而发现这些结论不正确。这就是渗透了从特殊到一般的数学思想方法。从某种意义上讲,数学思想方法甚至比知识更重要。因为思维的锻炼不仅对学生在某一学科上有益,更使其终生受益。所以理解和掌握以上几种数学思想方法对培养学生可持续发展的能力有极大的好处,其潜在价值更是不可估量的。
本文标题:几种重要的数学思想方法
链接地址:https://www.777doc.com/doc-5095504 .html