您好,欢迎访问三七文档
第9章方差分析介绍1、方差分析的概念2、方差分析的过程本章内容9.1方差分析的概念与方差分析的过程9.2单因素方差分析9.3单因变量多因素方差分析过程9.4多因变量线性模型的方差分析9.5重复测量设计的方差分析9.6方差成分分析9.7正交实验设计练习题(对银行数据进行方差分析)9.1.1方差分析的概念在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。通常是比较不同实验条件下样本均值间的差异方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响不同饲料对牲畜体重增长的效果等都可以使用方差分析方法去解决方差分析基本原理认为不同处理组的均值间的差别基本来源有两个:(1)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SSw,组内自由度dfw(2)实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作SSb,组间自由度dfb总偏差平方和SSt、SSb、SSw的公式P147方差分析基本原理(续)组内SSw、组间SSb除以各自的自由度(组内dfw=n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,那么,MSbMSw(远远大于)。MSb/MSw比值构成F分布,用F值与其临界值比较,推断各样本是否来自相同的总体.方差分析的假设检验零假设H0:m组样本均值都相同,即μ1=μ2=....=μm如果经过计算结果组间均方远远大于组内均方(MSbMSw),FF0.05(dfb,dfw),p0.05,拒绝零假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义;否则,FF0.05((dfb,dfw),p0.05不能拒绝零假设,说明样本来自相同的正态总体,处理间无差异。9.1.2方差分析中的术语1、因素与处理:因素是影响因变量变化的客观条件;处理是影响因变量变化的人为条件。也可通称为因素。用分类变量表示,取有限的离散值2、水平:因素的不同等级称作水平。水平值取有限的离散值。如:性别中的0,1(男、女)等3、单元(cell):指各因素的水平之间的每个组合。如性别(0,1)和年龄(10,11,12)的六种组合。9.1.2方差分析中的术语(续)4、因素的主效应和因素间的交互效应(如药物A、B的主效应及AB的交互效应)5、均值比较:均值的相对比较是比较各因素对因变量的效应大小的相对比较,如研究A、B的单独效应之和是否等于它们的交互效应,或A、B的效应是否相等。均值的多重比较是研究因素单元对因变量的影响之间是否存在显著性差异。如A、B的疗效是否存在显著性差异。6、单元均值、边际均值:在多因素方差分析中,每种因素水平组合的因变量均值称为单元均值。一个因素水平的因变量均值称为边际均值(MarginalMeans)方差分析中的术语(续)7、协方差分析:在一般进行方差分析时,要求除研究的因素外应该保证其他条件的一致。作动物实验往往采用同一胎动物分组给予不同的处理,研究不同处理对研究对象的影响就是这个道理。如研究身高与体重的关系时要求按性别分别进行分析,以消除性别因素的影响。要消除其他因素的影响,应采用协方差分析。8、重复测量:组内变异的主要的原因是实验对象之间的个体差异。由于个体差异存在,即使实验对象受到相同的处理,他们的因变量值也可能相当不同。重复测量设计的方差分析也是像协方差分析一样,是在研究中减少个体差异带来的误差方差的一种有效方法,而且由于对相同个体进行重复测量,在一定程度上降低了人力、物力、财力的消耗。如果重复测量是在一段时间内或一个温度间隔内进行的,还可以研究因变量对时间、温度等自变量的变化趋势,这种重复测量研究称为趋势研究。9.1.3方差分析过程1、One-Way过程:单因素简单方差分析过程。在CompareMeans菜单项中,可以进行单因素方差分析、均值多重比较和相对比较。2、GeneralLinearModel(简称GLM)过程:GLM过程由Analyze菜单直接调用。这些过程可以完成简单的多因素方差分析和协方差分析,不但可以分析各因素的主效应,还可以分析各因素间的交互效应。GeneralLinearModel(简称GLM)过程在GeneralLinearModel菜单项下有四项:Univariate:提供回归分析和一个因变量和一个或几个因素变量的方差分析。Multivariate:可进行多因变量的多因素分析RepeatedMeasure:可进行重复测量方差分析VarianceComponent:可进行方差成分分析。通过计算方差估计值,可以帮助我们分析如何减小方差。9.2单因素方差分析也称有一维方差分析,对二组以上的均值加以比较。检验由单一因素影响的一个(或几个相互独立的)分析变量由因素各水平分组的均值之间的差异是否有统计意义。并可以进行两两组间均值的比较,称作组间均值的多重比较,还可以对该因素的若干水平分组中哪些组均值不具有显著性差异进行分析,即一致性子集检验。One-WayANOVA过程要求:因(分析)变量属于正态分布总体,若因(分析)变量的分布明显的是非正态,应该用非参数分析过程。对被观测对象的实验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用RepeatedMeasure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。9.2.1简单的一维方差分析使用系统默认值进行一维方差分析:P151比较四种饲料对猪体重增加的作用有无不同(注意:分组变量的定义)data09-01Analyze-CompareMeans-One-WayANOVADependentList:weightFactor:fodder结果只有方差分析表结果中比较有用的值:Sig显著性概率值。结论:四种饲料对猪体重增加的作用有显著性差异。零假设H0:组间均值无显著性差异(即四种饲料对猪体重增加的平均值无显著性差异);9.2.2--9.2.3单因素方差分析的选择项和例子使用选择项的单因素方差分析:P155比较四种饲料对猪体重增加的作用data09-01Analyze-CompareMeans-One-WayANOVADependentList:weightFactor:fodderContrasts选项:多项式比较(AD与BC比较和AC与BD比较)PostHoc选项:均值多重比较LSD和Tamhane’sT2,一致性子集检验Duncan(各种方法的使用条件-方差齐或不齐)Options选项:Descriptive描述统计量,Homogeneity-of-variance方差齐次性检验,Meansplot均值分布图结果除了方差分析表,还有很多选项相应的结果结论:四种饲料对猪体重增加的作用有显著性差异,还可得知ABCD四种饲料对猪平均体重增加多少(越来越多)。P159同种三叶草被接种上不同的菌种,其含氮量情况data09-02(注意PostHoc各种方法结果的使用条件-方差齐或不齐).9.3单因变量多因素方差分析过程(多因素,2)1、单因变量多因素方差分析概述2、单因变量多因素方差分析的菜单和选择项3、使用系统默认值进行随机区组设计资料的方差分析4、2×2析因实验方差分析实例5、拉丁方区组设计的方差分析实例6、协方差分析实例7、多维交互效应方差分析实例9.3.1单因变量多因素方差分析概述1、概述是对一个独立变量是否受多个因素或变量影响而进行的方差分析。SPSS调用UNIANOVA过程,检验不同水平组合之间因(分析)变量均值由于受不同因素影响是否有差异的问题。UNIANOVA过程可以分析每一个因素的作用(主效应),也可以分析因素之间的交互作用(交互效应)。可以进行协方差分析,以及各因素变量与协变量之间的交互作用。UNIANOVA过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同,也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量彼此不独立。因素变量是分类变量,可以是数值型和字符型。固定因素变量(FixedFactor)是反应处理的因素。随机因素是随机设置的因素,是在确定模型时需要考虑会对实验有影响的因素,对实验结果影响的大小可以通过方差成分分析确定。2、关于模型:GLMUnivariate功能很强,可以建立包括各种主效应、交互效应的模型。必须认真分析因素变量的具体情况,来确定自己的模型,否则会产生不可解释的输出结果。9.3.2单因变量多因素方差分析的菜单和选择项菜单:Analyze-GeneralLinearModel-Univariate选项:选择分析模型Model:默认全模型FullFactorial:包括所有因素变量的主效应、所有协变量的主效应、所有因素与因素的交互效应,不包括协变量与其他因素的交互效应。自定义模型Custom:主效应(Maineffects及其因素变量)、交互变量(有交互效应维数之分)选择分解平方和的方法(默认为TYPEIII)IncludeInterceptinmodel:系统默认截距包括在回归模型中。选择对照方法Contrasts选择分布图形Plots选择多重比较分析PostHoc保存运算结果的选择项Save选择输出项Options9.3.3使用系统默认值进行随机区组设计资料的方差分析P168比较不同种系、剂量的雌性大白鼠子宫重量,看不同种系、不同剂量对雌性大白鼠子宫重量是否有显著性作用data09-03Analyze-GeneralLinearModel-UnivariateDependent:wuteriFixedFactor(s):mouse、etrogenModel选项:Custom(Maineffect,mouse和etrogen)主效应方差分析检验结果(截距,主效应,误差Error)结果中比较有用的值:Sig显著性概率值(各自主效应,截距-线性回归关系)结论:不同种系、不同剂量对雌性大白鼠子宫重量均有有显著性作用。注意:选择只有主效应,原因是每种组合只有一个观测量。如果分析交互作用,无法计算差异的显著性9.3.4析因实验方差分析概念多因素析因实验的方差分析:析因实验是把各因素的各水平的全部组合排列出来,然后按每个条件的组合作一次或多次重复的实验,所得的全部数据个数n=a*b*...*k,其中a,b,...为各因素的水平数,k为每种组合内的重复数。析因分析的好处在于对各因素间的交互影响项的方差都可以加以析离并检验其显著性。9.3.42×2析因实验方差分析实例两因素、两水平的实验设计。例子:P171使用两种药物A(0-不用,1-用)和B(0-不用,1-用)治疗缺铁性贫血(2*2=4种组合,每种组合有3个病人),看A、B、AB的作用data09-04Analyze-GeneralLinearModel-UnivariateDependent:redcellFixedFactors:drugA、drugB保留全模型选项(不对Model操作)选择Plot选项:作三个图drugA、drugB、drugA*drugB选择输出Option选项:选drugA、drugB、drugA*drugB、Overall进入DisplayMeansfor框中结果除了方差分析表((截距、主效应、交叉效应、误差Error),还有很多选项相应的结果结论p173:两种药物A和B均对治疗缺铁性贫血有显著疗效,两种药物A和B的协同作用也很显著。9.3.5拉丁方区组设计的方差分析实例拉丁方实验设计的特点:有两个以上因素变量,每个因素变量的水平数相等。例子:P174
本文标题:单因素方差分析
链接地址:https://www.777doc.com/doc-5100333 .html