您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 苏科版八年级数学(上册) 第三章《中心对称图形(一)》试题
1苏科版八年级数学(上册)第三章《中心对称图形(一)》试题一.选择题(共14小题)1.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.1种B.2种C.4种D.无数种2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对4.顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形5.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4B.6C.8D.106.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()2A.25°B.30°C.35°D.40°7.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cmB.2cmC.2cmD.4cm8.如图,将边长为的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A.B.C.1D.9.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补10.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组B.2组C.3组D.4组11.如图,直角三角形纸片ABC的∠C为90°,将三角形纸片沿着图示的中位线DE剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是()A.平行四边形B.矩形C.等腰梯形D.直角梯形312.如图为菱形ABCD与△ABE的重迭情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8B.9C.11D.1213.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点MB.格点NC.格点PD.格点Q14.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长度是()A.4B.5C.6D.7二.填空题(共12小题)15.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是_________cm.16.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.先将△ADE沿DE折叠,点A落在三角形所在平面内的点为A1,则∠BDA1的度数为_________.17.如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是_________.(填上你认为正确的一个答案即可)418.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于_________cm.19.如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=_________°.20.如图,DE是△ABC的中位线,M、N分别是BD、CE的中点,MN=6,则BC=_________.21.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为_________.22.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_________cm.523.如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点0.若AC=6,则线段AO的长度等于_________.24.等腰梯形的腰长为5cm,它的周长是22cm,则它的中位线长为_________cm.25.如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=_________.26.如图,DE是△ABC的中位线,DE=2cm,AB+AC=12cm,则BC=_________cm,梯形DBCE的周长为_________cm.三.解答题(共4小题)27.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.628.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.29.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.30.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.7苏科版八年级数学(上册)第三章《中心对称图形(一)》试题参考答案与试题解析一.选择题(共14小题)1.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.1种B.2种C.4种D.无数种考点:平行四边形的性质。139139专题:操作型。分析:根据平行四边形的中心对称性,可知这样的折纸方法有无数种.解答:解:因为平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分四边形的面积,则这样的折纸方法共有无数种.故选D.点评:此题主要考查平行四边形是中心对称图形的性质.平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.考点:生活中的旋转现象;轴对称图形;中心对称图形。139139分析:根据轴对称图形与中心对称图形的概念和图形特点求解.解答:解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.点评:掌握好中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有()8A.3对B.4对C.5对D.6对考点:直角三角形全等的判定;矩形的性质。139139分析:先找出图中的直角三角形,再分析三角形全等的方法,然后判断它们之间是否全等.解答:解:图中全等的直角三角形有:△AED≌△FEC,△BDC≌△FDC≌△DBA,共4对.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形考点:菱形的判定;三角形中位线定理;矩形的性质。139139分析:因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.5.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()9A.4B.6C.8D.10考点:菱形的判定与性质;矩形的性质。139139分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.6.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°考点:旋转的性质。139139分析:根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.解答:解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故选:B.点评:此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.7.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cmB.2cmC.2cmD.4cm10考点:矩形的性质;等边三角形的判定与性质。139139分析:根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.解答:解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选D.点评:本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.8.如图,将边长为的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A.B.C.1D.考点:平移的性质;正方形的性质。139139专题:计算题。分析:根据题意可得,阴影部分的图形是正方形,正方形ABCD的边长为,则AC=2,可得出A′C=1,可得出其面积.解答:解:∵正方形ABCD的边长为,∴AC=2,又∵点A′是线段AC的中点,∴A′C=1,∴S阴影=×1×1=.故选B.点评:本题考查了正方形的性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补考点:矩形的性质;菱形的性质。139139专题:推理填空题。分析:根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.11解答:解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、
本文标题:苏科版八年级数学(上册) 第三章《中心对称图形(一)》试题
链接地址:https://www.777doc.com/doc-5104515 .html