您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019全国2卷理科数学真题
2019年全国2卷理科数学1.设集合A={x|x2–5x+60},B={x|x–10},则A∩B=A.(–∞,1)B.(–2,1)C.(–3,–1)D.(3,+∞)2.设z=–3+2i,则在复平面内z对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB=(2,3),AC=(3,t),||BC=1,则ABBC=A.–3B.–2C.2D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L点的轨道运行.2L点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,2L点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:121223()()MMMRrRrrR.设rR,由于的值很小,因此在近似计算中34532333(1),则r的近似值为A.21MRMB.212MRMC.2313MRMD.2313MRM5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差2019年全国2卷理科数学第6题比较大小6.若ab,则A.ln(a−b)0B.3a3bC.a3−b30D.│a││b│2019年全国2卷理科数学第7题面面平行7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2019年全国2卷理科数学第8题圆锥曲线焦点8.若抛物线y2=2px(p0)的焦点是椭圆2231xypp的一个焦点,则p=A.2B.3C.4D.82019年全国2卷理科数学第9题三角函数周期与单调性9.下列函数中,以2为周期且在区间(4,2)单调递增的是A.f(x)=│cos2x│B.f(x)=│sin2x│C.f(x)=cos│x│D.f(x)=sin│x│2019年全国2卷理科数学第10题倍角公式10.已知α∈(0,2),2sin2α=cos2α+1,则sinα=A.15B.55C.33D.2552019年全国2卷理科数学第11题圆锥曲线离心率11.设F为双曲线C:22221(0,0)xyabab的右焦点,O为坐标原点,以OF为直径的圆与圆222xya交于P,Q两点.若PQOF,则C的离心率为A.2B.3C.2D.52019年全国2卷理科数学第12题函数性质及参数取值范围12.设函数()fx的定义域为R,满足(1)2()fxfx,且当(0,1]x时,()(1)fxxx.若对任意(,]xm,都有8()9fx,则m的取值范围是A.9,4B.7,3C.5,2D.8,32019年全国2卷理科数学第13题统计13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.2019年全国2卷理科数学第14题函数奇偶性14.已知()fx是奇函数,且当0x时,()eaxfx.若(ln2)8f,则a__________.2019年全国2卷理科数学第15题解三角形15.ABC△的内角,,ABC的对边分别为,,abc.若π6,2,3bacB,则ABC△的面积为_________2019年全国2卷理科数学第16题空间想象能力16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2019年全国2卷理科数学第17题点、直线、平面的位置关系及空间向量的应用17.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.2019年全国2卷理科数学第18题事件与概率18.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.2019年全国2卷理科数学第19题等比数列及等差数列19.已知数列{an}和{bn}满足a1=1,b1=0,1434nnnaab,1434nnnbba.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.2019年全国2卷理科数学第20题导数的概念及几何意义、导数应用20.已知函数11lnxfxxx.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线exy的切线.20.已知函数11lnxfxxx.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线exy的切线.2019年全国2卷理科数学第21题直线与圆锥曲线21.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−12.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:PQG△是直角三角形;(ii)求PQG△面积的最大值.21.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−12.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:PQG△是直角三角形;(ii)求PQG△面积的最大值.21.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−12.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:PQG△是直角三角形;(ii)求PQG△面积的最大值.2019年全国2卷理科数学第22题极坐标及参数方程22.[选修4—4:坐标系与参数方程]在极坐标系中,O为极点,点000(,)(0)M在曲线:4sinC上,直线l过点(4,0)A且与OM垂直,垂足为P.(1)当0=3时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.2019年全国2卷理科数学第23题求解绝对值不等式及分类讨论思想23.[选修4—5:不等式选讲]已知()|||2|().fxxaxxxa(1)当1a时,求不等式()0fx的解集;(2)若(,1)x时,()0fx,求a的取值范围.
本文标题:2019全国2卷理科数学真题
链接地址:https://www.777doc.com/doc-5109631 .html