您好,欢迎访问三七文档
18.1勾股定理(1)——数形结合之美你想知道吗?国庆节前,为了更好观看阅兵式,小明妈妈买了一部42英寸(106厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有85厘米长和64厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?~探索勾股定理数学故事链接相传两千五百年前,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反映直角三角形三边的某种数量关系,同学们,我们也来观察下面的图案,看看你能发现什么?探索勾股定理数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?SA+SB=SCABC探索勾股定理ABCABCA的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图1-1图1-291625163652探索勾股定理ABCSA=a2SB=b2SC=c2abca2+b2=c2设:直角三角形的三边长分别是a、b、c猜想:两直角边a、b与斜边c之间的关系?SA+SB=SC探索勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么c2=a2+b2.abc勾股弦探索勾股定理bacs2s1试一试?请利用此图象,证明勾股定理:a2+b2=c2探索勾股定理走进数学史美国第二十任总统伽菲尔德总统巧证勾股定理aabbccADCBE返回应用勾股定理已知△ABC的三边分别是a,b,c,若∠B=90度,则有关系式()A.a2+b2=c2B.a2+c2=b2C.a2-b2=c2D.b2+c2=a2ABC选一选应用勾股定理讲一讲86ABC求图中直角三角形的未知边的长度。1517ABC勾股定理,想得再多一点(1)若a=5,b=12,则c=___________.在Rt△ABC中,(2)若c=4,b=2,则a=______.∠C=900.做一做勾股定理,想得再多一点如图,受台风莫拉克影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?4米3米勾股定理,想得再多一点国庆节前,为了更好观看阅兵式,小明妈妈买了一部42英寸(106厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有85厘米长和64厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?~回头再看看内容总结:(1)运用勾股定理的条件是什么?(2)勾股定理揭示了直角三角形的什么关系?(3)勾股定理有什么用途?方法总结:用直角三角形三边表示三个正方形面积——观察归纳发现勾股定理——任意画一个直角三角形,再验证自己的发现。AB家庭作业:课本P55习题2补充:1、求下列直角三角形中未知边的长:补充:1、求下列直角三角形中未知边的长:2、如图所示,一棵大树在一次强烈台风中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?AB勾股定理的由来这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。“什么是”勾、股“呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作商高定理。毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了。(为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.)走进数学史勾股定理的证明方法证法一证法二证法三(邹元治证明)(赵爽证明)赵爽:我国古代数学家走进数学史勾股定理的证明方法证法四证法五证法六(加菲尔德证明)加菲尔德:第二十任总统(梅文鼎证明)梅文鼎:清代天文、数学家(项明达证明)项明达:清代数学家走进数学史勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。现在在网络上看到较多的是16种,包括前面的6种,还有:欧几里得证明、利用相似三角形性质证明、杨作玫证明、李锐证明、利用切割线定理证明、利用多列米定理证明、作直角三角形的内切圆证明、利用反证法证明、辛卜松证明、陈杰证明。走进数学史应用勾股定理abc确定斜边c2=a2+b2?acb确定斜边b2=a2+c2?bca确定斜边a2=b2+c2?应用勾股定理c2=a2+b2abcb2=c2-a2a2=c2-b2灵活运用复习提问1、任意三角形三边满足怎样的关系?2、对于等腰三角形,三边之间存在怎样的特殊关系?等边三角形呢?3、对于直角三角形,三边之间存在怎样的特殊关系?2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”,这就是本届大会会徽的图案。这个图案就是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”相传2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形的某种数量关系。CBA情景引入探究活动分成四人小组,每个小组课前准备好4个全等的直角三角形和以直角三角形各边为边长的3个正方形(如右图).运用这些材料(不一定全用),你能另外拼出一些正方形吗?试试看,你能拼几种.bcabaabcba图1图3cccb-acbaabbaababcccc图2复习提问1、任意三角形三边满足怎样的关系?2、对于等腰三角形,三边之间存在怎样的特殊关系?等边三角形呢?3、对于直角三角形,三边之间存在怎样的特殊关系?2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”,这就是本届大会会徽的图案。这个图案就是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”相传2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形的某种数量关系。CBA情景引入ABCABC(图中每个小方格代表一个单位面积)图1图2(1)观察图1正方形A中含有个小方格,即A的面积是个单位面积。正方形B的面积是个单位面积。正方形C的面积是个单位面积。99918你是怎样得到C的面积的?与同伴交流交流。123(2)(3)探究活动一:ABCABC(图中每个小方格代表一个单位面积)图1图2cS正方形1433182分割成若干个直角边为整数的三角形(单位面积)返回ABCABC(图中每个小方格代表一个单位面积)图1图2cS正方形216218(单位面积)把C看成边长为6的正方形面积的一半返回ABCABC(图中每个小方格代表一个单位面积)图1图2(2)在图2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少?(3)你能发现图1中三个正方形A,B,C的面积之间有什么关系吗?SA+SB=SC即:以等腰直角三角形两条直角边上的正方形面积之和等于斜边上的正方形的面积探究活动二:ABCCBA(1)观察右边两幅图:(2)填表(每个小正方形的面积为单位1):A的面积B的面积C的面积左图右图49169??(3)你是怎样得到正方形C的面积的?与同伴交流.ABCCBA“割”“补”“拼”(4)分析填表数据,你发现了什么?A的面积B的面积C的面积左图4913右图16925CBASSS结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.222cba议一议:(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?ABCCBA(2)你能发现直角三角形三边长度之间存在什么关系吗?CBASSS勾股定理(gou-gutheorem)如果直角三角形两直角边分别为a、b,斜边为c,那么222abc即直角三角形两直角边的平方和等于斜边的平方。abc表示为:Rt△ABC中,∠C=90°则222cba议一议:判断下列说法是否正确,并说明理由:(1)在△ABC中,若a=3,b=4,则c=5(2)在Rt△ABC中,如果a=3,b=4,则c=5.(3)在Rt△ABC中,∠C=90°,如果a=3,b=4,则c=5.探究活动分成四人小组,每个小组课前准备好4个全等的直角三角形和以直角三角形各边为边长的3个正方形(如右图).运用这些材料(不一定全用),你能另外拼出一些正方形吗?试试看,你能拼几种.bcabaabcba图1图3cccb-acbaabbaababcccc图2bcabaabcbaabbaababcccc方法一:221)(baSS而abbaS214221abcS21422所以abcabba214214222即222cba,,..因为,方法二:abbaababcccc2)baS(正2214cab,化简得:222cba方法三:cccb-acba2cS正2)(214abab,化简得:222cba1.求下列图中表示边的未知数x、y、z的值.①81144z②③625576144169比一比看看谁算得快!2.求下列直角三角形中未知边的长:可用勾股定理建立方程.方法小结:8x171620x125xCA.8米B.9米C.10米D.14米1、如图,一个长8米,宽6米的草地,需在相对角的顶点间加一条小路,则小路的长为()8m6m别踩我,我怕疼!2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为()ABCA.50米B.120米C.100米D.130米130120?A某楼房在20米高处的楼层失火,消防员取来25米长的云梯救火,已知梯子的底部离墙的距离是15米。问消防队员能否进入该楼层灭火?已知两直角边求斜边ABC1520????我国古代两种证法:1、公元3世纪我国汉代数学家赵爽在为《周髀算经》作注时给出的“弦图”:cba我国有记载的最早勾股定理的证明,是三国时,我国古代数学家赵爽在他所著的《勾股方圆图注》中,用四个全等的直角三角形拼成一个中空的正方形来证明的。每个直角三角形的面积叫朱实,中间的正方形面积叫黄实,大正方形面积叫弦实,这个图也叫弦图。2002年的国际数学家大会将此图作为大会会徽.2、我国数学家刘徽在他的《九章算术注》中给出的“青朱出入图”:青入青出青入青出朱入朱出青方朱方证法四:(伽菲尔德证法1876年)ABCDE如图,Rt△ABE≌Rt△ECD,可知∠AED=90°;))((21baba梯形ABCD的面积=2212121cabab梯形ABCD的面积=∴2212121))((21cababbaba∴222cbabacBAFKMGHCNDE证法五:(欧几里得证法公元前3世纪)“新娘的轿椅”或“修士的头巾”如图,Rt△ABC中,∠ACB=90°,四边形ACHK、BCGF、ABED都是正方形,CN⊥DE,连接BK、CD。AK=ACAB=AD∠KAB=∠CAD△KAB≌△CADS正方形KACH=S四边形ADNM同理:S正方形BCGF=S四边形BENMS正方形KACH+S正方形BCGF=S四边形ADNM+S四边形BENMS△KAB=S△CADAMADACAK2121AMADACAK∴222cba
本文标题:勾股定理公开课课件
链接地址:https://www.777doc.com/doc-5122044 .html