您好,欢迎访问三七文档
1圆的方程练习题答案A级基础演练一、选择题1.(2013·济宁一中月考)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为().A.-1B.1C.3D.-3解析化圆为标准形式(x+1)2+(y-2)2=5,圆心为(-1,2).∵直线过圆心,∴3×(-1)+2+a=0,∴a=1.答案B2.(2013·太原质检)设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0a1,则原点与圆的位置关系是().A.原点在圆上B.原点在圆外C.原点在圆内D.不确定解析将圆的一般方程化为标准方程(x+a)2+(y+1)2=2a,因为0a1,所以(0+a)2+(0+1)2-2a=(a-1)20,所以原点在圆外.答案B3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为().A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5解析由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x2+(y+2)2=5.答案D4.(2013·郑州模拟)动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为().A.x2+y2=32B.x2+y2=16C.(x-1)2+y2=16D.x2+(y-1)2=16解析设P(x,y),则由题意可得:2x-2+y2=x-2+y2,化简整理得x2+y2=16,故选B.答案B二、填空题5.以A(1,3)和B(3,5)为直径两端点的圆的标准方程为________.2解析由中点坐标公式得AB的中点即圆的圆心坐标为(2,4),再由两点间的距离公式得圆的半径为-2+-2=2,故圆的标准方程为(x-2)2+(y-4)2=2.答案(x-2)2+(y-4)2=26.已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为________.解析由题意得C上各点到直线l的距离的最小值等于圆心(1,1)到直线l的距离减去半径,即|1-1+4|2-2=2.答案2三、解答题7.(12分)求适合下列条件的圆的方程:(1)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(2)过三点A(1,12),B(7,10),C(-9,2).解(1)法一设圆的标准方程为(x-a)2+(y-b)2=r2,则有b=-4a,-a2+-2-b2=r2,|a+b-1|2=r,解得a=1,b=-4,r=22.∴圆的方程为(x-1)2+(y+4)2=8.法二过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).∴半径r=-2+-4+2=22,∴所求圆的方程为(x-1)2+(y+4)2=8.(2)法一设圆的一般方程为x2+y2+Dx+Ey+F=0,则1+144+D+12E+F=0,49+100+7D+10E+F=0,81+4-9D+2E+F=0.解得D=-2,E=-4,F=-95.∴所求圆的方程为x2+y2-2x-4y-95=0.法二由A(1,12),B(7,10),得AB的中点坐标为(4,11),kAB=-13,则AB的垂直平分线方程为3x-y-1=0.3同理得AC的垂直平分线方程为x+y-3=0.联立3x-y-1=0,x+y-3=0得x=1,y=2,即圆心坐标为(1,2),半径r=-2+-2=10.∴所求圆的方程为(x-1)2+(y-2)2=100.8.(13分)已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=410.(1)求直线CD的方程;(2)求圆P的方程.解(1)直线AB的斜率k=1,AB的中点坐标为(1,2),∴直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由P在CD上得a+b-3=0.①又直径|CD|=410,∴|PA|=210,∴(a+1)2+b2=40,②由①②解得a=-3,b=6或a=5,b=-2.∴圆心P(-3,6)或P(5,-2),∴圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40
本文标题:圆的方程练习题答案
链接地址:https://www.777doc.com/doc-5127867 .html