您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 2018年成都市中考数学试题及答案详解
四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A.B.C.D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.B.C.D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。3.如图所示的正六棱柱的主视图是()A.B.C.D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。5.下列计算正确的是()A.B.C.D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。6.如图,已知,添加以下条件,不能判定的是()A.B.C.D.【答案】C【考点】三角形全等的判定【解析】【解答】解:A、∵∠A=∠D,∠ABC=∠DCB,BC=CB∴△ABC≌△DCB,因此A不符合题意;B、∵AB=DC,∠ABC=∠DCB,BC=CB∴△ABC≌△DCB,因此B不符合题意;C、∵∠ABC=∠DCB,AC=DB,BC=CB,不能判断△ABC≌△DCB,因此C符合题意;D、∵AB=DC,∠ABC=∠DCB,BC=CB∴△ABC≌△DCB,因此D不符合题意;故答案为:C【分析】根据全等三角形的判定定理及图中的隐含条件,对各选项逐一判断即可。7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【考点】平均数及其计算,中位数,极差、标准差,众数【解析】【解答】A、极差=30℃-20℃=10℃,因此A不符合题意;B、∵20、28、28、24、26、30、22这7个数中,28出现两次,是出现次数最多的数∴众数是28,因此B符合题意;C、排序:20、22、24、26、28、28、30最中间的数是24、26,∴中位数为:(24+26)÷2=25,因此C不符合题意;D、平均数为:(20+22+24+26+28+28+30)÷7≠26因此D不符合题意;故答案为:B【分析】根据极差=最大值减去最小值,可对A作出判断;根据众数和中位数的定义,可对B、C作出判断;根据平均数的计算方法,可对D作出判断。从而可得出答案。8.分式方程的解是()A.x=1B.C.D.【答案】A【考点】解分式方程【解析】【解答】解:方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2)x2-x-2+x=x2-2x解之:x=1经检验:x=1是原方程的根。故答案为:A【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,再解整式方程,然后检验即可求解。9.如图,在中,,的半径为3,则图中阴影部分的面积是()A.B.C.D.【答案】C【考点】平行四边形的性质,扇形面积的计算【解析】【解答】解:∵平行四边形ABCD∴AB∥DC∴∠B+∠C=180°∴∠C=180°-60°=120°∴阴影部分的面积=120×32÷360=3故答案为:C【分析】根据平行四边形的性质及平行线的性质,可求出∠C的度数,再根据扇形的面积公式求解即可。10.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小D.的最小值为-3【答案】D【考点】二次函数的性质,二次函数的最值【解析】【解答】解:A、当x=0时,y=-1,图像与轴的交点坐标为(0,-1),因此A不符合题意;B、对称轴为直线x=-1,对称轴再y轴的左侧,因此B不符合题意;C、当x<-1时y的值随值的增大而减小,当-1<x<0时,y随x的增大而增大,因此C不符合题意;D、a=2>0,当x=-1时,y的最小值=2-4-1=-3,因此D符合题意;故答案为:D【分析】求出抛物线与y轴的交点坐标,可对A作出判断;求出抛物线的对称轴,可对B作出判断;根据二次函数的增减性,可对C作出判断;求出抛物线的顶点坐标,可对D作出判断;即可得出答案。二、填空题(A卷)11.等腰三角形的一个底角为,则它的顶角的度数为________.【答案】80°【考点】三角形的面积,等腰三角形的性质【解析】【解答】解:∵等腰三角形的一个底角为∴它的顶角的度数为:180°-50°×2=80°故答案为:80°【分析】根据等腰三角形的两底角相等及三角形的内角和定理,就可求得结果。12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色兵乓球的个数是________.【答案】6【考点】概率公式,简单事件概率的计算【解析】【解答】解:设该盒子中装有黄色兵乓球的个数为x个,根据题意得:=,解之:x=6故答案为:6【分析】根据黄球的概率,建立方程求解即可。13.已知,且,则的值为________.【答案】12【考点】解一元一次方程,比例的性质【解析】【解答】解:设则a=6k,b=5k,c=4k∵∴6k+5k-8k=6,解之:k=2∴a=6×2=12故答案为:12【分析】设,分别用含k的式子表示出a、b、c的值,再根据,建立关于k的方程,求出k的值,就可得出a的值。14.如图,在矩形中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交于点.若,,则矩形的对角线的长为________.【答案】【考点】线段垂直平分线的性质,勾股定理,作图—基本作图【解析】【解答】连接AE,根据题意可知MN垂直平分AC∴AE=CE=3在Rt△ADE中,AD2=AE2-DE2AD2=9-4=5∵AC2=AD2+DC2AC2=5+25=30∴AC=【分析】根据作图,可知MN垂直平分AC,根据垂直平分线的性质,可求出AE的长,再根据勾股定理可求出AD的长,然后再利用勾股定理求出AC即可。三、解答题(A卷)15.(1).(2)化简.【答案】(1)原式(2)解:原式【考点】实数的运算,分式的混合运算,特殊角的三角函数值【解析】【分析】(1)先算乘方、开方、绝对值,代入特殊角的三角函数值,再算乘法,然后在合并同类二次根式即可。(2)先将括号里的分式通分计算,再将除法转化为乘法,然后约分化简即可。16.若关于的一元二次方程有两个不相等的实数根,求的取值范围.【答案】由题知:.原方程有两个不相等的实数根,,.【考点】一元二次方程的求根公式及应用【解析】【分析】根据已知条件此方程有两个不相等的实数根,得出b2-ac>0,解不等式求解即可。17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为________,表中的值________;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.【答案】(1)120;45%(2)比较满意;(人);补全条形统计图如下:(3)(人).答:该景区服务工作平均每天得到1980人的肯定.【考点】用样本估计总体,统计表,条形统计图【解析】【解答】(1)12÷10%=120人m=1-10%-40%-5%=45%【分析】(1)根据统计表可得出:本次调查的总人数=非常满意的人数除以所占百分比;m=1-其它三项的百分比,计算即可。(2)根据根据统计表中的数据,可得出n=抽查的总人数×40%,再补全条形统计图。(3)用3600ד非常满意”和“满意”所占的百分比之和,计算即可。18.由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.(参考数据:,,,,,)【答案】解:由题知:,,.在中,,,(海里).在中,,,(海里).答:还需要航行的距离的长为20.4海里.【考点】解直角三角形,解直角三角形的应用﹣方向角问题【解析】【分析】根据题意可得出,,,再利用解直角三角形在Rt△ACD和Rt△BCD中,先求出CD的长,再求出BD的长,即可解答。19.如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.(1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.【答案】(1)∵一次函数y=x+b的图象经过点A(-2,0),∴-2+b=0,得b=2.∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x0);(2)∵点A(-2,0),∴OA=2,设点M(m-2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,,解得,m=或m=2+2,∴点M的坐标为(2-2,2)或(2+2)【考点】待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题,平行四边形的判定与性质【解析】【分析】(1)根据点A的坐标求出一次函数解析式,再根据两图像交于点B,利用反比例函数解析式求出点B的坐标,然后利用待定系数法求出反比例函数解析式即可。(2)设出点M、N的坐标,根据当且时,四边形是平行四边形,建立关于m的方程,根据m>0,求出m的值,从而可得出点M的坐标,即可解答。20.如图,在中,,平分交于点,为上一点,经过点,的分别交,于点,,连接交于点.(1)求证:是的切线;(2)设,,试用含的代数式表示线段的长;(3)若,,求的长.【答案】(1)如图,链接CD∵AD为∠BAC的角平分线,∴∠BAD=∠CAD.∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD.∴OD∥AC.又∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC是⊙O的切线.(2)连接DF,由(1)可知,BC为切线,∴∠FDC=∠DAF.∴∠CDA=∠CFD.∴∠AFD=∠ADB.又∵∠BAD=∠DAF,∴∆ABD∽∆ADF,∴,∴AD2=AB·AF.∴AD2=xy,∴AD=(3)连接EF在Rt∆BOD中,sinB=,设圆的半径为r,∴,∴r=5.∴AE=10,AB=18.∵AE是直径,∠AFE=90°,而∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=.∴AF=AE·sin∠AEF
本文标题:2018年成都市中考数学试题及答案详解
链接地址:https://www.777doc.com/doc-5134280 .html