您好,欢迎访问三七文档
试验一绝缘电阻、吸收比的测量一、实验目的1.了解兆欧表的原理,掌握兆欧表的使用方法;2.学习绝缘电阻、吸收比的测量方法,掌握分析绝缘状态、判断故障位置的方法。3.分析设备绝缘状况。二、实验内容1.用兆欧表(摇表)测量试品(三相电缆)的绝缘电阻和吸收比;2.测量高压直流下的试品泄漏电流。三、实验原理测量绝缘电阻及吸收比就是利用吸收现象来检查绝缘是否整体受潮,有无贯通性的集中性缺陷,规程上规定加压后60s和15s时测得的绝缘电阻之比为吸收比。即K=R60///R15//当K≥1.3时,认为绝缘干燥,而以60s时的电阻为该设备的绝缘电阻。(a)原理图(b)等值电路图1-1双层介质的吸收现象下面以双层介质为例说明吸收现象,如图1-1。在双层介质上施加直流电压,当K刚合上瞬间,电压突变,这时层间电压分配取决于电容.即12021CCUUt而在稳态(t-∞)时,层间电压取决于电阻,即2121rrUUt若被测介质均匀,C1=C2,r1=r2,则ttUUUU21021,在介质分界面上不会出现电荷重新分配的过程。若被测介质均匀C1≠C2,r1≠r2,则ttUUUU21021。这表明K合闸后,两层介质上的电压要重新分配。若C1,r1r2,则合闸瞬间U2U1;稳态时,U1U2,即U2逐渐下降,U1逐渐增大。C2已充上的一部分电荷要通过r2放掉,而C1则要经R和r2从电源再吸收一部分电荷。这一过程称为吸收过程。因此,直流电压加在介质上,回路中电流随时间的变化,如图1-2所示。图1-2吸收曲线初始瞬间由于各种极化过程的存在,介质中流过的电流很大.随时间增加。电流逐渐减小,最后趋于一稳定值Ig,这个电流的稳定值就是由介质电导决定的泄漏电流。与之相应的电阻就是介质的绝缘电阻,图1-2中阴影部分面积就表示了吸收过程中的吸收电荷,相应的电流称为吸收电流。它随时间增长而衰减,其衰减速度取决于介质的电容和电阻(时间常数为212121)(rrrrCC)。对于燥绝缘,r很大,故很大,吸收过程明显,吸收电流衰减缓慢,吸收比K大;而绝缘受潮后,电导增大,r减小,Ig也增大,吸收过程不明显1K。因此,可根据绝缘电阻和吸收比K来判断绝缘是否受潮。四、实验装置及接线图1.用兆欧表测量试品绝缘电阻和吸收比的接线图图1-3兆欧表测量绝缘电阻图中:R1、R2:串联电阻;E:摇表接地电极;G:摇表屏蔽电极;L:摇表高压电极;A、B、C:三相电缆的三个单相端头。2.用数字式兆欧表测量电缆护套的绝缘电阻EGL兆欧表电缆试品高压输出端接地端屏蔽端地图1-1兆欧表测量绝缘电阻接线图悬空图1-4数字式兆欧表测量绝缘电阻接线图四、实验内容用兆欧表测量试品绝缘电阻和吸收比的接线图1.断开被试设备的电源及一切外联线.将被试品对地充分放电,容量较大的放电不得少于2min。2.用清洁干净的软布擦去被试品表面污垢:3.检验摇表,不接试品,摇动手柄指针指向“∞”;短接L,E两端缓缓摇动手柄指针应指零。4.按图1-3接线,经检查无误之后,以每分钟120转的速度摇动摇表手柄。5.读取15秒及60秒时的读数,即为R15及R606.对电容较大的试品,在试验快结束时候,应设法在摇表仍处于额定转速时断开L或者E引线,以免摇表停止转动时,试品向摇表放电而冲击指针,造成摇表指针的损坏。7.表停转后,对试品进行放电,然后分别将B相和C相作为被试对象,重复步骤2和3。8.测量时应记录当时试品温度.气象情况和日期。用数字式兆欧表测量电缆护套的绝缘电阻1.机械零位校准:档位开关拨至OFF位,调节机械零位调节钮使仪表指针标准到标度尺的“∞”分度线上。2.连接测试线:将红色测试线的红色插头插到兆欧表的高压输出端,黑色插头插入屏蔽端,将另一黑色插头插入仪器接地端插座。将测试线的另一端接至被测试品的测试端,在进行高阻测量时,为消除表面泄漏电流的影响,还应使屏蔽端接至被测试品测试端与地之间绝缘外表地屏蔽层(屏蔽环)上。3.测量a.按测试要求的电压将档位开关置于相应电压位置,此时表盘电源指示灯亮,此时LCD数字显示使用场合的环境温度。b.接通电源,按下高压开关按钮五、实验数据处理1.列出所试电缆的型号、电压等级、相应的绝缘电阻的测量结果。2.分析测量结果的正误、每个数据测量五组,求其误差的平方均值。3.根据绝缘电阻值求取试品的吸收比,判断电缆是否受潮。吸收比是指设备绝缘60秒时的绝缘电阻与15秒时的绝缘电阻的比值。对于未受潮的电气设备吸收比应在1.3~2范围内,电气设备受潮时,此比值近与1。对于电容量不大,绝缘正常的试品,因吸收比不显著,故无实用价值。六、实验结果分析1.绝缘电阻不同结构、不同容量、不同电压等级的试品,其绝缘电阻有很大差异。因此,试验规程中一般没有也不应规定统一的绝缘电阻合格值。绝缘电阻的判断是根据工厂、安装、交接、大修及历次试验的历史数据进行相互比较.根据同期同型产品,同一产品不同相的数据进行相互比较。通常认为当绝缘电阻降至初始值的60%时应查明原因。造成绝缘电阻显著下降的原因有:1)全部或局部绝缘有贯穿性受潮;2)全部或局部表面有贯穿性脏污;3)绝缘中存在因局部放电造成的贯穿性烧伤导电通道。2.吸收比吸收比是同一设备两个电阻的比值.故排除了绝缘结构几何尺寸的影响。规程规定了在100C-300C,吸收比不小于1.3。七、思考题1.加在被试品上的电压是什么极性?为什么要采用这种极性的电压?2.测量绝缘电阻时为什么同时要记录温度?3.为什么几何尺寸不同时绝缘电阻也不同?吸收比与几何尺寸有关吗?实验二泄漏电流及直流耐压试验一、实验目的1.掌握获得直流高压的方法;2.学习测量泄漏电流的方法,并根据泄漏电流的变化状况来分析绝缘状况。二、试验装置及接线测量泄漏电流所需的直流高压是利用交流电压经整流器整流而获得的。用得较多、最简单的是半波整流电路如图6。图中C为稳压电容,可减小输出电压的脉动,一般取C为0.1PF即可,对大容量试品.如电缆、电力电容器等.其本身电容量就很大.可不用电容器。R1为保护电阻.用以限制当被试设备击穿放电时在回路中造成的大电流,其阻值按硅堆整流器的短时最大允许电流来选择R=U/Im(MΩ)式中,u为试验时所加直流高压,kV;Im为硅堆的短时最大允许电流,mA;为保证电阻R有一定热容量,且电阻表面不发生闪络,宜采用水阻,表面长度按lkv/cm设计。当硅堆串联使用时.为使硅堆电压分布均匀,需并联均压电阻.其阻值一般取硅堆反向电阻值的1/3~1/4。所产生的直流高压可用静电电压表直接测量或通过高阻串联微安表进行测量.如图6。高阻值电阻R2的选择由被测电压的大小而定,一般取流过R2的电流为数十微安到1mA.并折算成kV数。利用微安表测量泄漏电流,其接线常有图7(a)、(b))两种。图7(a)中微安表在低压端.读数比较安全,操作方便。但试品需对地绝缘.在现场中实现困难。所以工程上常用图7(b)所示接线,微安表在高压端.为避免高压部分产生电晕和表面泄漏电流引起误差.将微安表放入屏蔽罩内且采用屏蔽的高压引线,这样测量准确,但操作不方便。为避免在试验过程中大电流通过微安表.微安表需进行保护,一般的保护线路如图8。图中C为滤波电容.用来滤掉测量回路中的交流分量并使放电管F能稳定放电,一般取0.5-5uF.300V;放电管F是保证回路中出现微安表不允许的电流时能迅速放电.将微安表短接。放电管放电电压约50-150V,利用在微安表支路中串一适当增压电阻R’,其阻值为R’=UF/IμA×106Ω。其中UF为放电管实际放电电压(V)。IμA为多量程微安表所用挡的电流满刻毒值(μA)。三、实验原理泄漏电流测量原理与绝缘电阻的测量原理完全相同。兆欧表由于其容量小.故绝缘电阻的测量受其负载特性的影响,绝缘劣化时影响尤为严重。用直流高压装置来测量绝缘的泄漏电流时,与兆欧表相比有以下优点:1)试验电压高,且可任意调节试验电压值,对一定电压等级的被试品加以相应的试验电压,可使绝缘奉身的弱点更易显示出来;同时在升压过程中可随时监视微安表的指示,以了解绝缘状况:如绝缘良好.则泄漏电流与电压的关系应是成正比例增大:如绝缘有缺陷或受潮时,泄漏电流的增长比电压增长快.且电压较高时.泄漏电流急剧增加,还会有一些不正常现象;2)微安表的测量精度比兆欧表高:3)测量泄漏电流可与直流耐压合并进行。直流耐压试验与泄漏电流测量,方法一致,但试验的作用有所不同。前者校核耐电强度,其试验电压较高:后者着重检查绝缘状况,其试验电压较低。二者均能反映设备受潮、劣化和局部缺陷等问题。而直流耐压因电压高对于发现局部缺陷更有效。四、实验方法1.根据现有条件选择合适的试验设备和接线图。2.按接线图接线。通电前。应查看接线和所有表计数值是否正确,调压器位置是否处在零位。3.试验中电压逐渐升高,并读取相应的泄漏电流值。4.试验中如有击穿、闪络、微安表指针大幅度摆动或电流突变等异常现象时,应马上降压、切断电源,查明原因经处理后再做。5.试验完后,降压,切断调压器电源,最后切断总电源。6.每次试验完毕.须将被试品经电阻对地充分放电。根据放电火花的大小.也可大概了解被试品绝缘状况。放电时应使用绝缘棒,放电完毕应在被试品上挂上接地棒.方可拆线或更改接线。7.再试验时,须检查接地线是否拆除。五、实验结果分析与绝缘电阻一样.不同试品的泄漏电流不同。为正确判断绝缘状况,也应将所测得的泄漏电流值进行纵横比较。同样,温度对其影响也较大,应尽量在接近温度下测量,不同温度下的泄漏电流应换算为同一温度时的值再作比较。测试泄漏电流时,由于所加电压较高,如达到试验电压时还可以兼作直流耐压。规程中给出了不同试验电压下的泄漏电流参考值。直流耐压可以发现一些未贯穿的集中性缺陷,甚至可能发现试品将击穿,泄漏电流大大增加。六、思考题1.泄漏电流及直流耐压试验中试品为变压器及电缆时,接线图如何?2.为提高测量准确度可采用哪些方法?实验三介质损耗正切角tanδ的测量一、实验目的1.了解西林电桥的工作原理及结构,学习操作测试方法;2.学习绝缘介损角正切的测量方法;3.掌握用所得测量结果判断被试品绝缘状况的方法。二、实验原理工程介质都不是理想的电介质,都是有损耗的.在交流电压作用下.绝缘物中产生的损耗称为介质损耗。把绝缘的功率因数角的余角称为介质损失角.用δ表示.有损介质可用串联或并联等值电路来分析.如图9。对并联等值电路有:CURUtantan22CURUP对串联等值电路有:xxxxRCCIIRtan222tan1tanxCURIP可见介质损耗P与外施电压U,试品几何尺寸均有关系,而tanδ却与试品尺寸无关,仅与试品的绝缘性能有关。因此可用tanδ值表征介质在交流下的绝缘性能:—般介质的tanδ很小,故1tan1。因此,无论是串联还是并联等值电路,其计算表达式是一样的。三、试验装置及接线仪器测量线路包括一标准回容(CN)和一被试回路(Cx),如图3-1所示。标准回路由内置高稳稳定度标准电容与测量线路组成,被试回路由试品和测量线路组成。测量线路由取样电阻与前置放大器和A/D转换器组成。通过测量电路分别测得标准回路电流与被试回路电流幅值及其相位差,再由单片机运用数字化实时采样方法,通过矢量运算便可以得出试品的电容值和介质损耗正切值。图3-1精密介损测量仪工作原理测试接线方式分为正接法和反接法两种,正接法是采用仪器的专用高压电缆从仪器后部的Cx端上引出接至被测电缆的高压端(电缆导体),专用低压电缆从仪器后部的Zx端引出接至被测电缆的低压端,其接线图见图3-2(a)。反接法是用专用高压电缆从仪器后部的Cx端上引出接至被测电缆,低压端接地如图3-2(b)。试品电缆介损测量仪CxZx图2-2(a)正接法接线图介损测量仪Cx试品电缆图2-2(b)反接法接线图四、实验内容:1.测量电缆的主绝缘的介质损耗正切角因数tanδ。2.测量电缆的护套绝缘的损耗因数tanδ。五、试验步骤1.按要求进行正确接线,保证接地系统良好,选定试验电压等级。2.打开电源
本文标题:绝缘知识
链接地址:https://www.777doc.com/doc-5154120 .html