您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 五年级基础奥数辅导讲义(1-18)
目录第一课时整数与小数四则混合运算第二课时平均数问题(一)第三课时消去问题第四课时流水行船问题第五课时盈亏问题(一)第六课时盈亏问题(二)第七课时平均数问题(二)第八课时平均数问题(三)第九课时一般应用题(一)第十课时一般应用题(二)第十一课时一般应用题(三)第十二课时一般应用题(四)第十三课时周期问题第十四课时倍数问题(一)第十五课时倍数问题(二)第十六课时假设法解题第十七课时行程问题第十八课时鸡兔同笼问题第一课时整数与小数四则混合运算例:在下面5个0.5之间,添上适当的运算符号+、—、×、÷和括号,使下面的等式成立。0.50.50.50.50.5=2【思路导航】:上述问题我们可以用硬凑的方法来做,不过这样做一般来说比较困难,而且难以找到解题的规律。此题可以采用倒过来想的方法予以解答。解:(0.5+0.5)÷0.5-0.5+0.5=2(0.5+0.5)÷0.5+0.5﹣0.5=2(0.5+0.5+0.5-0.5)÷0.5=2(0.5+0.5)÷(0.5×0.5)×0.5=2说明:上题中采用的分析方法,是从算式的最后一个数字开始逐步向前推想的,这种方法叫做倒推法。将问题倒过来想,是解决数学问题的一种常见的方法,特别是从条件很难入手的情况下,这种方法可以帮助我们找出问题的突破口。试试看:在下面的式子里添上运算符号,使等式成立。⑴0.50.50.50.50.5=0⑵0.50.50.50.50.5=1⑶0.50.50.50.50.5=3⑷0.50.50.50.50.5=4⑸0.50.50.50.50.5=5第二课时平均数问题(一)解决平均数问题的关键是根据已知条件确定“总数”和“份数”。它们之间具有下列数量关系:平均数=总数÷份数总数=平均数×份数份数=总数÷平均数例1:某商店将4千克水果糖和6千克奶糖混合成什锦糖,已知水果糖每千克4.2元,奶糖每千克5.6元,那么什锦糖每千克多少元?解(4.2×4+5.6×6)÷(4+6)=50.4÷10=5.04(元)答什锦糖每千克5.04元。例2:汽车往返于甲、乙两地之间,去时每小时行30千米,返回每小时行60千米。求汽车往返的平均速度。解设甲、乙两地的路程是120千米。120×2÷(120÷30+120÷60)=240÷(4+2)=40(千米)答汽车往返两地的平均速度是每小时40千米。说明当题目条件较少时,往往可采用设数的方法来解决问题。如上题还可以假设甲、乙两地的路程是30千米、60千米等,其结果是一样的。试试看1、小华期中考试语文和外语两科的平均分是96分,数学成绩是93分,求小华的语文、外语和数学的平均成绩。2、某班有40名学生,期中数学考试,有2名同学因故缺考,这样全班平均分为89分。缺考的两个同学补考都得99分后,这个班的平均成绩是多少?3、汽车从甲地到乙地,每小时行50千米,18小时到达,然后从乙地返回甲地,每小时行75千米。问汽车往返甲、乙两地的平均速度是多少?第三课时消去问题在有些应用题中,给出了两个或两个以上的未知数量间的关系,要求出这些未知的数量,先把题中的条件按对应关系一一排列出来,思考时可以通过比较条件,分析对应的未知量的变化情况,设法消去一个或一些未知量,从而把一道数量关系较复杂的题目,变成比较简单的题目解答出来,这种方法叫做消去法。例:小红在商店里买了4块橡皮和3把小刀,共付0.59元。小黄买同样的2块橡皮和3把小刀,共付0.43元。问:一块橡皮和一把小刀的价钱各是多少元?解(0.59-0.43)÷(4-2)=0.16÷2=0.08(元)(0.43-0.08×2)÷3=0.27÷3=0.09(元)答一块橡皮0.08元,一把小刀0.09元。试试看1、买3枝钢笔,2块橡皮共付4.98元。若买5枝钢笔、2块橡皮要付7.98元。问一枝钢笔、一块橡皮各值多少元?2、小卫到百货商店买了2枝圆珠笔和1枝钢笔,用去人民币5.5元。如果买一枝圆珠笔和2枝钢笔要人民币6.5元,问1枝圆珠笔和1枝钢笔价格各是多少元?3、2份蛋糕和2杯饮料共用28元,1份蛋糕和3份饮料共用去18元,问一份蛋糕和一杯饮料各需多少元?第四课时流水行船问题流水行程问题,是行程问题的一种。常见数量关系如下:顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2解题时要认真读题,理清数量关系,在此基础上,运用上述数量关系式就能解决问题。例1甲、乙两港间的水路长208千米。一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。解顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26-16)÷2=5(千米/小时)答船在静水中的速度为每小时21千米,水速为每小时5千米。试试看1、两个码头相距352千米。一船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这条河的水流速度。2、甲、乙两地相距234千米,一只船从甲港到乙港需9小时,从乙港返回乙港需13小时,问船速和水速各为每小时多少千米?3、两地相距360千米,一艘游艇在其间驶了个来回。顺水而下时需要12小时,逆水返回时需要18小时。求游艇的船速。第五课时盈亏问题(一)把一定数量的物品平均分给一定数量的人,如果每人少分,则物品有余(盈),如果每人多分,则物品不足(亏)。已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。盈亏问题的基本解法是:解法一:两次结果差÷两次分配数量差=组数每组少分数量×组数+剩余量=物品总数量解法二:两次结果差÷两次分配数量差=组数每组多分数量×组数-不足数量=物品总数量例:把一堆糖果分给小朋友们,如果每人分2块,将剩余12块;如果每人分3块,将缺少2块。那么小朋友共有多少人?解(12+2)÷(3-2)=14(人)答:小朋友共有14人。试试看1、把一堆糖果分给小朋友,若每人2块,将剩余12块;若每人3块,将缺少5块。那么小朋友共有多少人?2、幼儿园分饼干,若每人分3块,则余14块;若每人分4块,则还有三名小朋友没分到。一共有多少名小朋友?有多少块饼干?3、一筐鸡蛋,若5个一包多4个,7个一包少6个。这筐鸡蛋至少有多少个?第六课时盈亏问题(二)例全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学。这个班有多少个同学?【思路导航】根据题意可知:每条船坐9人,就能减少一条船,也就是少9个同学;每条船坐6人,就要增加一条船,也就是多出6个同学。因此,每船坐9人比每船坐6人可多做9+6=14(人),15里面包含5个(9-6),说明有5条船。知道了有5条船,就可以求全班人数了。解:(9+6)÷(9-6)=5(条)9×﹙5-1﹚=36(人)答:这个班有36人。试试看1、老师把一篮苹果分给小班的同学,如果减少一个同学,每个同学正好分得5个;如果增加一个同学,正好每人分得4个。求这篮苹果一共有多少个?2、五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一条船,正好每只船上坐8人。求这个年级共有多少个同学?3、一个旅游团去旅馆住宿,6人一间,多2个房间;若4人一间又少了2个房间。旅游团共有多少人?第七课时平均数问题(二)例五个数的平均数是18,把其中一个数改为6后,这五个平均数是16,这个改动的数原来是多少?解18×5-16×5=1010+6=16答:这个改动的数原来是16。试试看1、某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?2、甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分,可是,甲在抄分数时,把自己的分错抄成87分,因此算得的四人平均分为88分。求甲在这次考试中得了多少分?3、五(1)班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算后,全班的平均成绩是91.7分,五(1)班有几名学生?第八课时平均数问题(三)例小芳与四名同学一起参加一次数学竞赛,那四位同学的成绩分别为78分、91分、82分、79分,小芳的成绩比五人的平均成绩高6分。求小芳的数学成绩。【思路导航】四名同学的平均分是(78+91+82+79)÷4=82.5(分),后来加进小芳后,因为小芳的成绩比五人的平均成绩高6分,这6分平均分给这四名同学,82.5+6÷4=84(分)就是五人的平均分,小芳的数学成绩为84+6=90(分)解(78+91+82+79)÷4=82.5(分)82.5+6÷4=84(分)84+6=90(分)答:小芳的数学成绩为90分。试试看1、一个技术工带5个普通工人完成一项任务,每个普通工人各得120元,这位技术工的收入比他们6人的平均收入还多20元,问这位技术工得多少元?2、小华读一本书,第一天读83页,第二天读74页,第三天读71页,第四天读64页,第五天读的页数比这五天中平均每天读的页数多32页,小华第五天读多少页?3、两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳多少下?第九课时一般应用题(一)一般复合应用题往往是有两组或两组以上的数量关系交织在一起,解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。在实际解题时,可以根据题中的已知条件,灵活运用这两种方法。例五年级有六个班,每班人数相等。从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数,原来每班多少人?【思路导航】从每班选16人参加少先队活动,6个班共选16×6=96(人)。剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班的人数,所以,原来每班96÷2=48(人)解:16×6÷(6-4)=48(人)答:原来每班48人。试试看1、五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数,原来每人存款多少元?2、把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半,这堆货物一共有多少箱?3、老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵树。这批树苗一共有多少?第十课时一般应用题(二)较复杂的一般应用题中,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢。因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。例1甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿24千克,结账时,甲和乙都要付给丙24元,每千克苹果多少元?【思路导航】三人拿同样的钱买苹果应该分得同样多的苹果。24×2÷3=16(千克),也就是丙少拿16千克苹果,所以得到24×2=48(元)。每千克苹果是48÷16=3(元)。解:24×2÷3=16(千克)24×2÷16=3(元)答:每千克苹果3元。试试看1、甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6角钱。问每支铅笔多少钱?2、春游时小明和小军拿出同样多的钱买了6个面包,中午发现小红没有带食品,结果三人平分了这些面包,而小红分别给了小明和小军各2.2元钱,求每个面包多少元?3、“六一”儿童节时同学们做纸花,小华买来7张红纸,小英买来了和红纸同样价格的5张黄纸,教师把这些纸平均分给小华、小英和另外两名同学,结果另外两名同学共付给老师9元钱。问老师把9元钱怎样分给小华和小英?第十一课时一般应用题(三)例2一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已漏进水800桶。一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完,每分钟漏进水多少桶?【思路导航】50分钟两台抽水机一共抽水(18+14)×50=1600(桶)。1600桶水中,有800桶是
本文标题:五年级基础奥数辅导讲义(1-18)
链接地址:https://www.777doc.com/doc-5154778 .html