您好,欢迎访问三七文档
已知f(x)=x3+ax2+bx+c在x=1与x=-23时都取得极值.(1)求a,b的值;(2)若f(-1)=32,求f(x)的单调区间和极值.例2【思路点拨】先求导数f′(x),再令f′(x)=0得到关于x的一元二次方程,其两根为x1=1与x2=-23,最后由一元二次方程根与系数的关系求a,b的值.【解】(1)f′(x)=3x2+2ax+b,令f′(x)=0.由题设,知x1=1与x2=-23为f′(x)=0的解.∴-23a=1-23,b3=1×(-23).∴a=-12,b=-2.(2)由(1)知f(x)=x3-12x2-2x+c,由f(-1)=-1-12+2+c=32,得c=1.∴f(x)=x3-12x2-2x+1.∴f′(x)=3x2-x-2.当x变化时,f′(x)、f(x)的变化情况如下表:x(-∞,-23)-23(-23,1)1(1,+∞)f′(x)+0-0+f(x)单调递增极大值单调递减极小值单调递减∴f(x)的递增区间为(-∞,-23)和(1,+∞),递减区间为(-23,1).当x=-23时,f(x)有极大值,f(-23)=4927;当x=1时,f(x)有极小值,f(1)=-12.,1的极值1)(x求f(x)32函数在时有极值10,则a,b的值为()A、或B、或C、D、以上都不对223)(abxaxxxf1x3,3ba11,4ba1,4ba11,4ba11,4ba解:由题设条件得:0)1(10)1(/ff0231012baaba解之得11433baba或注意代入检验注意:f/(x0)=0是函数取得极值的必要不充分条件已知函数极值情况,逆向应用确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.已知极值求参数极值问题的综合应用主要涉及到极值的正用和逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数与方程的思想、分类讨论的思想在解题中的应用,在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键.函数极值的综合应用例5设函数f(x)=x3-6x+5,x∈R.(1)求函数f(x)的单调区间和极值;(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.【思路点拨】(1)利用导数求单调区间和极值.(2)由(1)的结论,问题转化为y=f(x)和y=a的图象有3个不同的交点,利用数形结合的方法求解.【解】(1)f′(x)=3x2-6,令f′(x)=0,解得x1=-2,x2=2.因为当x>2或x<-2时,f′(x)>0;当-2<x<2时,f′(x)<0.所以f(x)的单调递增区间为(-∞,-2)和(2,+∞);单调递减区间为(-2,2).当x=-2时,f(x)有极大值5+42;当x=2时,f(x)有极小值5-42.(2)由(1)的分析知y=f(x)的图象的大致形状及走向如图所示.所以,当5-42<a<5+42时,直线y=a与y=f(x)的图象有三个不同交点,即方程f(x)=a有三个不同的解.【名师点评】用求导的方法确定方程根的个数,是一种很有效的方法.它通过函数的变化情况,运用数形结合思想来确定函数图象与x轴的交点个数,从而判断方程根的个数.1.极值的概念理解在定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.请注意以下几点:(1)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个定义域内最大或最小.方法感悟(2)函数的极值不一定是惟一的,即一个函数在某个区间上或定义域内的极大值或极小值可以不止一个.(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值,如下图所示,x1是极大值点,x4是极小值点,而f(x4)>f(x1).2.极值点与导数为零的点(1)可导函数的极值点是导数为零的点,但是导数为零的点不一定是极值点,即“点x0是可导函数f(x)的极值点”是“f′(x0)=0”的充分但不必要条件;(2)可导函数f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧和右侧f′(x)的符号不同.如果在x0的两侧f′(x)的符号相同,则x0不是极值点.二、新课——函数的最值xX2oaX3bx1y观察右边一个定义在区间[a,b]上的函数y=f(x)的图象.发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______。f(x1)、f(x3)f(x2)f(b)f(x3)问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?导数的应用-----求函数最值.(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个最小值.求f(x)在闭区间[a,b]上的最值的步骤(1)求f(x)在区间(a,b)内极值(极大值或极小值)所有极值连同端点函数值进行比较,最大的为最大值,最小的为最小值※典型例题63()61233fxxx求函数在,上的最值.'2'31233,30,22(2)22(2)10(3)15,(3)3()6123310.fxxxfxxxfffffxxx解:令解得:或又,,所以函数在,上的最大值为22,最小值为1、求出所有导数为0的点;2、计算;3、比较确定最值。※动手试试求下列函数在给定区间上的最大值与最小值:31()274,4fxxxx、312()612,33fxxxx、33()32,3fxxxx、(浙江)(本题满分12分)已知a为实数,(Ⅰ)求导数;(Ⅱ)若,求在[-2,2]上的最大值和最小值;(Ⅲ)若在(-∞,-2]和[2,+∞)上都是递增的,求a的取值范围。))(4()(2axxxf)(xf0)1(f)(xf)(xf※典型例7题练习:1.下列说法正确的是()(A)函数的极大值就是函数的最大值(B)函数的极小值就是函数的最小值(C)函数的最值一定是极值(D)若函数的最值在区间内部取得,则一定是极值.2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则()fx()(A)等于0(B)大于0(C)小于0(D)以上都有可能3.函数y=432111432xxx,在[-1,1]上的最小值为()(A)0(B)-2(C)-1(D)1213ADA小结求在[a,b]上连续,(a,b)上可导的函数f(x)在[a,b]上的最值的步骤:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.※思考32()2622371a2()22fxxxafx已知函数在,上有最小值求实数的值;求在,上的最大值。反思:本题属于逆向探究题型;其基本方法最终落脚到比较极值与端点函数值大小上,从而解决问题,往往伴随有分类讨论。2、求最大(最小)值应用题的一般方法:(1)分析实际问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式,这是关键一步;(2)确定函数定义域,并求出极值点;(3)比较各极值与定义域端点函数的大小,结合实际,确定最值或最值点.1、实际应用问题的表现形式,常常不是以纯数学模式反映出来:首先,通过审题,认识问题的背景,抽象出问题的实质;其次,建立相应的数学模型,将应用问题转化为数学问题,再解.应用例1、在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?60xx60xx解:设箱底边长为x,则箱高h=(60-x)/2.箱子容积V(x)=x2h=(60x2-x3)/2(0x60).令,解得x=0(舍去),x=40.且V(40)=16000.02360)(2xxxV由题意可知,当x过小(接近0)或过大(接近60)时,箱子的容积很小,因此,16000是最大值.答:当x=40cm时,箱子容积最大,最大容积是16000cm3.2、若函数f(x)在定义域内只有一个极值点x0,则不需与端点比较,f(x0)即是所求的最大值或最小值.说明1、设出变量找出函数关系式;(所说区间的也适用于开区间或无穷区间)确定出定义域;所得结果符合问题的实际意义xy例2:如图,在二次函数f(x)=4x-x2的图象与x轴所围成的图形中有一个内接矩形ABCD,求这个矩形的最大面积.解:设B(x,0)(0x2),则A(x,4x-x2).从而|AB|=4x-x2,|BC|=2(2-x).故矩形ABCD的面积为:S(x)=|AB||BC|=2x3-12x2+16x(0x2)..16246)(2xxxS令,得.3322,33220)(21xxxS),2,0(1x所以当时,.9332)(3322maxxSx因此当点B为时,矩形的最大面积是)0,2322(.9332※拓展提高我们知道,如果在闭区间【a,b】上函数y=f(x)的图像是一条连续不断的曲线,那么它必定有最大值和最小值;那么把闭区间【a,b】换成开区间(a,b)是否一定有最值呢?函数f(x)有一个极值点时,极值点必定是最值点。有两个极值点时,函数有无最值情况不定。如果函数f(x)在开区间(a,b)上只有一个极值点,那么这个极值点必定是最值点。
本文标题:函数的极值与最值
链接地址:https://www.777doc.com/doc-5157585 .html