您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 数列综合练习(错位相减法、裂项相消法)
1/6数列综合练习(一)1.等比数列前n项和公式:(1)公式:Sn=a11-qn1-q=a1-anq1-qq≠1na1q=1.(2)注意:应用该公式时,一定不要忽略q=1的情况.2.若{an}是等比数列,且公比q≠1,则前n项和Sn=a11-q(1-qn)=A(qn-1).其中:A=a1q-1.3.推导等比数列前n项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n项和.4.拆项成差求和经常用到下列拆项公式:(1)1nn+1=1n-1n+1;一、选择题1.设Sn为等比数列{an}的前n项和,8a2+a5=0,则S5S2等于()A.11B.5C.-8D.-112.记等比数列{an}的前n项和为Sn,若S3=2,S6=18,则S10S5等于()A.-3B.5C.-31D.333.设等比数列{an}的公比q=2,前n项和为Sn,则S4a2等于()A.2B.4C.152D.1724.设{an}是由正数组成的等比数列,Sn为其前n项和,已知a2a4=1,S3=7,则S5等于()A.152B.314C.334D.1725.在数列{an}中,an+1=can(c为非零常数),且前n项和为Sn=3n+k,则实数k的值为()A.0B.1C.-1D.26.在等比数列{an}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A.514B.513C.512D.510二、填空题7.若{an}是等比数列,且前n项和为Sn=3n-1+t,则t=________.8.设等比数列{an}的前n项和为Sn,若a1=1,S6=4S3,则a4=________.9.若等比数列{an}中,a1=1,an=-512,前n项和为Sn=-341,则n的值是________.10.如果数列{an}的前n项和Sn=2an-1,则此数列的通项公式an=________.三、解答题11.在等比数列{an}中,a1+an=66,a3an-2=128,Sn=126,求n和q..12.已知Sn为等比数列{an}的前n项和,Sn=54,S2n=60,求S3n.2/613.已知数列{an}的前n项和Sn=2n+2-4.(1)求数列{an}的通项公式;(2)设bn=an·log2an,求数列{bn}的前n项和Tn.14.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.(1)求an及Sn;(2)令bn=1a2n-1(n∈N*),求数列{bn}的前n项和Tn..15.设数列{an}满足a1=2,an+1-an=3·22n-1.(1)求数列{an}的通项公式;(2)令bn=nan,求数列{bn}的前n项和Sn.16.在数列{an}中,a1=2,an+1=an+ln1+1n,则an等于()A.2+lnnB.2+(n-1)lnnC.2+nlnnD.1+n+lnn17.已知正项数列{an}的前n项和Sn=14(an+1)2,求{an}的通项公式.18.(12分)在数列{an}中,a1=1,an+1=2an+2n.(1)设bn=an2n-1.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和.19.(12分)已知数列{an}的前n项和为Sn,且a1=1,an+1=12Sn(n=1,2,3,…).(1)求数列{an}的通项公式;(2)当bn=log32(3an+1)时,求证:数列{1bnbn+1}的前n项和Tn=n1+n3/6.习题解答:1.D解析由8a2+a5=0得8a1q+a1q4=0,∴q=-2,则S5S2=a11+25a11-22=-11.2..答案D解析由题意知公比q≠1,S6S3=a11-q61-qa11-q31-q=1+q3=9,∴q=2,S10S5=a11-q101-qa11-q51-q=1+q5=1+25=33.3.答案C解析方法一由等比数列的定义,S4=a1+a2+a3+a4=a2q+a2+a2q+a2q2,得S4a2=1q+1+q+q2=152.方法二S4=a11-q41-q,a2=a1q,∴S4a2=1-q41-qq=152.4.答案B解析∵{an}是由正数组成的等比数列,且a2a4=1,∴设{an}的公比为q,则q0,且a23=1,即a3=1.∵S3=7,∴a1+a2+a3=1q2+1q+1=7,即6q2-q-1=0.故q=12或q=-13(舍去),∴a1=1q2=4.∴S5=41-1251-12=8(1-125)=314.5.答案C解析当n=1时,a1=S1=3+k,当n≥2时,an=Sn-Sn-1=(3n+k)-(3n-1+k)=3n-3n-1=2·3n-1.由题意知{an}为等比数列,所以a1=3+k=2,∴k=-1.6.答案D解析由a1+a4=18和a2+a3=12,得方程组a1+a1q3=18a1q+a1q2=12,解得a1=2q=2或a1=16q=12.∵q为整数,∴q=2,a1=2,S8=228-12-1=29-2=5107.答案-13解析显然q≠1,此时应有Sn=A(qn-1),又Sn=13·3n+t,∴t=-13.8.答案34/6解析S6=4S3⇒a11-q61-q=4·a11-q31-q⇒q3=3(q3=1不合题意,舍去).∴a4=a1·q3=1×3=3.9.答案10解析Sn=a1-anq1-q,∴-341=1+512q1-q,∴q=-2,又∵an=a1qn-1,∴-512=(-2)n-1,∴n=10.答案2n-1解析当n=1时,S1=2a1-1,∴a1=2a1-1,∴a1=1.当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1)∴an=2an-1,∴{an}是等比数列,∴an=2n-1,n∈N*.11.解∵a3an-2=a1an,∴a1an=128,解方程组a1an=128,a1+an=66,得a1=64,an=2,①或a1=2,an=64.②将①代入Sn=a1-anq1-q,可得q=12,由an=a1qn-1可解得n=6.将②代入Sn=a1-anq1-q,可得q=2,由an=a1qn-1可解得n=6.故n=6,q=12或212.解方法一由题意Sn,S2n-Sn,S3n-S2n成等比数列,∴62=54(S3n-60),∴S3n=1823.方法二由题意得a≠1,∴Sn=a11-qn1-q=54①S2n=a11-q2n1-q=60②由②÷①得1+qn=109,∴qn=19,∴a11-q=9×548,∴S3n=a11-q3n1-q=9×548(1-193)=1823.13.解(1)由题意,Sn=2n+2-4,n≥2时,an=Sn-Sn-1=2n+2-2n+1=2n+1,当n=1时,a1=S1=23-4=4,也适合上式,∴数列{an}的通项公式为an=2n+1,n∈N*.(2)∵bn=anlog2an=(n+1)·2n+1,∴Tn=2·22+3·23+4·24+…+n·2n+(n+1)·2n+1,①2Tn=2·23+3·24+4·25+…+n·2n+1+(n+1)·2n+2.②②-①得,Tn=-23-23-24-25-…-2n+1+(n+1)·2n+2=-23-231-2n-11-2+(n+1)·2n+2=-23-23(2n-1-1)+(n+1)·2n+2=(n+1)·2n+2-23·2n-1=(n+1)·2n+2-2n+2=n·2n+2.14.解(1)设等差数列{an}的首项为a1,公差为d.因为a3=7,a5+a7=26,所以a1+2d=7,2a1+10d=26,解得a1=3,d=2.所以an=3+2(n-1)=2n+1,Sn=3n+nn-12×2=n2+2n.所以,an=2n+1,Sn=n2+2n.(2)由(1)知an=2n+1,5/6所以bn=1a2n-1=12n+12-1=14·1nn+1=14·1n-1n+1,所以Tn=14·(1-12+12-13+…+1n-1n+1)=14·(1-1n+1)=n4n+1,即数列{bn}的前n项和Tn=n4n+115.解(1)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,符合上式,所以数列{an}的通项公式为an=22n-1.(2)由bn=nan=n·22n-1知Sn=1·2+2·23+3·25+…+n·22n-1,①从而22·Sn=1·23+2·25+3·27+…+n·22n+1.②①-②得(1-22)Sn=2+23+25+…+22n-1-n·22n+1,即Sn=19[(3n-1)22n+1+2].16.答案A解析∵an+1=an+ln1+1n,∴an+1-an=ln1+1n=lnn+1n=ln(n+1)-lnn.又a1=2,∴an=a1+(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=2+[ln2-ln1+ln3-ln2+ln4-ln3+…+lnn-ln(n-1)]=2+lnn-ln1=2+lnn.17.解当n=1时,a1=S1,所以a1=14(a1+1)2,解得a1=1.当n≥2时,an=Sn-Sn-1=14(an+1)2-14(an-1+1)2=14(a2n-a2n-1+2an-2an-1),∴a2n-a2n-1-2(an+an-1)=0,∴(an+an-1)(an-an-1-2)=0.∵an+an-10,∴an-an-1-2=0.∴an-an-1=2.∴{an}是首项为1,公差为2的等差数列.∴an=1+2(n-1)=2n-1.18解:(1)证明由已知an+1=2an+2n,得bn+1=an+12n=2an+2n2n=an2n-1+1=bn+1.∴bn+1-bn=1,又b1=a1=1.∴{bn}是首项为1,公差为1的等差数列.(2)解由(1)知,bn=n,an2n-1=bn=n.∴an=n·2n-1.∴Sn=1+2·21+3·22+…+n·2n-1两边乘以2得:2Sn=1·21+2·22+…+(n-1)·2n-1+n·2n,两式相减得:-Sn=1+21+22+…+2n-1-n·2n=2n-1-n·2n=(1-n)2n-1,∴Sn=(n-1)·2n+1.19解、:(1)解由已知an+1=12Sn,an=12Sn-1(n≥2),得an+1=32an(n≥2).∴数列{an}是以a2为首项,以32为公比的等比数列.6/6又a2=12S1=12a1=12,∴an=a2×(32)n-2(n≥2).∴an=1,n=1,12×32n-2,n≥2.(2)证明bn=log32(3an+1)=log32[32×(32)n-1]=n.∴1bnbn+1=1n1+n=1n-11+n.∴Tn=1b1b2+1b2b3+1b3b4+…+1bnbn+1=(11-12)+(12-13)+(13-14)+…+(1n-11+n)=1-11+n=n1+n
本文标题:数列综合练习(错位相减法、裂项相消法)
链接地址:https://www.777doc.com/doc-5175622 .html