您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小学奥数归一问题有答案
1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。例2小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。例2小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。1.有20人修筑一条公路,计划15天完成.动工3天后抽出5人植树,留下的人继续修路.如果每个人的工作效率不变,那么修完这段公路实际用多少天?解析:这条公路的总工作量有:20×15=300人次,动工3天后抽出5人,20人修3天完成了:20×3=60人次,那么剩下300-60=240人次,这些剩下的工作给15个人做,每人就还需要工作240÷15=16﹙天﹚,这样,实际工作就有3﹢16=19﹙天﹚2.修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成?解析:修完这条公路共需要60×80=4800﹙个﹚劳动日,60人工作20天,还剩下:4800-60×20=3600﹙个﹚劳动日,剩下的工作又增加了30人,共90人需要再用:3600÷﹙60+30﹚=40﹙天﹚。3.学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天?解析:剩下的粉笔18个班可用60-45=15﹙天﹚,现在有18-3=15﹙个﹚班,可用的天数为:18×15÷15=18﹙天﹚。4.某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天?解析:⑴求出煤的总吨数5×40=200﹙吨﹚⑵改进后每天用煤量5-1=4﹙吨﹚⑶天数为:200÷4=50﹙天﹚。5.某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人?解析:18×12=216﹙个﹚劳动日,故总工作量为216×2=432个劳动日,还剩216个劳动日,现需30-12-9=9天完成。故需216÷9=24﹙人﹚,所以还需补24-18=6﹙人﹚。6.小红生病住院了,为了祝她早日康复,三(一)班和三(二)班一起为她叠千纸鹤.两个班的同学3天一共叠了2400只千纸鹤,现在两个班级的同学同时开始叠,在相同的时间内,三(一)班叠了2430只千纸鹤,三(二)班叠了2370只千纸鹤.那么三(一)班和三(二)班每天各叠多少只千纸鹤?解析:⑴求两班每天共叠2400÷3=800﹙只﹚,“相同时间”是:﹙2430+2370﹚÷800=6﹙天﹚,三㈠班每天叠2430÷6=405﹙只﹚,三㈡班每天叠:2370÷6=395﹙只﹚。7.甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱?解析:①8个面包的总价是:48×3=144﹙角﹚②面包的单价是:144÷8=18﹙角﹚③乙应收回:18×5-48=42角=4元2角;④丙应收回:18×3-48=6角。8.某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人?解析:每个工人每小时加工:1320÷3÷10=44﹙个﹚。现在剩下:3960-1320=2640﹙个﹚零件,15小时内完成需要工人2640÷44÷15=4﹙个﹚,即需增加1个工人。
本文标题:小学奥数归一问题有答案
链接地址:https://www.777doc.com/doc-5176249 .html