您好,欢迎访问三七文档
1数学中的格点图形网格是学生从小就熟悉的图形,在网格中研究格点图形,具有很强的可操作性,这和新课程的理念相符合,因此它也成为近几年新课程中考的热点问题.一、考查坐标平面内的点与有序实数对是一一对应的.【例1】(2006,大连)如图,在平面直角坐标系中,点E的坐标是().A.(1,2);B.(2,1);C.(-1,2);D.(1,-2).图1Eyx123-1-2-3-3-2-1321O123574689ACBDEFGHI12345678【例2】如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为___________.【例3】已知△ABC在直角坐标系中的位置如图所示,如果△A'B'C'与△ABC关于y轴对称,那么点A的对应点A'的坐标为().A.(-4,2);B.(-4,-2);C.(4,-2);D.(4,2).二、在网格中运用勾股定理进行计算.【例4】图4,是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为_______m.(结果保留根号)【例5】三角形在正方形网格纸中的位置如图所示,则sinα的值是().A.43;B.34;C.53;D.54.ABC4题图1m2αABC【例6】如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是().A.322;B.3510;C.355;D.455.【例7】如图,直角坐标系中,△ABC的顶点都在网格点上,其中A点坐标为(2,-1),则△ABC的面积为____平方单位.ABCOxyABCOxyDEF【例8】(2006,广州)如图1,将一块正方形木板用虚线划分成36个全等的小正方形,然后,按其中的实线切成七块形状不完全相同的小木片,制成一副七巧板.用这副七巧板拼成图2的图案,则图2中阴影部分的面积是整个图案面积的().1111A.;B.;C.;D..47822图1图23【例9】在平面直角坐标系中描出下列各点A(2,1),B(0,1),C(-4,-3),D(6,-3),并将各点用线段顺次连接构成一个四边形ABCD.(1)四边形ABCD是什么特殊的四边形?(2)在四边形ABCD内找一点P,使得△APB、△BPC、△CPD、△APD都是等腰三角形,请写出P点的坐标.三、分类讨论思想在格点问题中的运用.【例10】已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1,则点C的个数为A.3个;B.4个;C.5个;D.6个.ABC3C1C2AB【例11】如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.四、网格中图形变换的画图与描述.【例12】在5×5方格纸中将图1中的图形N平移后的位置如图2所示,那么下面平移中正确的是()4MNA'AMN图1图2A.先向下移动1格,再向左移动1格;B.先向下移动1格,再向左移动2格;C.先向下移动2格,再向左移动1格;D.先向下移动2格,再向左移动2格.【例13】如图1,点O、B的坐标分别为(0,0)、(3,0),将△OAB绕O点逆时针方向旋转90°得到△OA′B′.⑴画出△OA′B′;⑵点A′的坐标为________________;⑶求BB′的长.ABO【例14】如图1,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3的图形.5图1【例15】如图1,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.图1五、网格图形的操作方案设计问题.【例16】如图,在网格中有两个全等的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图(1)、(2)中画出两种不同的拼法.6【例17】如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.如图中的△ABC称为格点△ABC.(1)如果A、D两点的坐标分别是(1,1)和(0,-1),请你在方格纸中建立平面直角坐标系,并直接写出点B、点C的坐标;(2)请根据你所学过的平移、旋转或轴对称等知识,说明图中“格点四边形图案”是如何通过“格点△ABC图案”变换得到的.【例18】请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0).依题意,割补前后图形的面积相等,有25x,解得5x.由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形.要图1图2图37求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.【例19】操作与探究:(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,使点A与点C重合,DE为折痕.试证明△CBE等腰三角形;(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?AAABCBBDCEEDCF图①图②图③图④图5图48六、利用格点图形探究规律.【例20】在边长为l的正方形网格中,按下列方式得到“L”形图形第1个“L”形图形的周长是8,第2个“L”形图形的周长是12,则第n个“L”形图形的周长是①③②
本文标题:数学中的格点图形
链接地址:https://www.777doc.com/doc-5181916 .html