您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 新定义函数-重庆中考新题型
函数图形变换方法总结:1.掌握函数平移的规律,包括一次函数、反比例函数和二次函数;2.确定函数的特征点为基准移动函数,并确定移动后的解析式;3.根据题目要求结合函数性质解决问题。例1.我们规定:形如()axkyabkkabxb、、为常数,且的函数叫做“奇特函数”.当0ab时,“奇特函数”axkyxb就是反比例函数(0)kykx.(1)若矩形的两边长分别是2和3,当这两边长分别增加x和y后,得到的新矩形的面积为8,求y与x之间的函数关系式,并判断这个函数是否为“奇特函数”;(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A,C的坐标分别为(9,0)、(0,3).点D是OA的中点,连结OB,CD交于点E,“奇特函数”6axkyx的图象经过B,E两点.①求这个“奇特函数”的解析式;②把反比例函数3yx的图象向右平移6个单位,再向上平移个单位就可得到①中所得“奇特函数”的图象.过线段BE中点M的一条直线l与这个“奇特函数”的图象交于P,Q两点,若以B、E、P、Q为顶点组成的四边形面积为16103,请直接写出点P的坐标.例2.定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}(1)将“特征数”是30,,13的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是313yx;(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线3x分别交于D、C两点,判断以A、B、C、D四点为顶点的四边形形状,请说明理由并计算其周长;(3)若(2)中的四边形与“特征数”是211,2b,b2的函数图象的有交点,求满足条件的实数b的取值范围.变式如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?例3.如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.(1)抛物线212yx对应的碟宽为;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x-2)2+3(a>0)对应的碟宽为;(2)抛物线2543yaxax(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3…),定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn﹣1的相似比为12,且Fn的碟顶是Fn﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn,则hn=,Fn的碟宽有端点横坐标为2;若F1,F2,…,Fn的碟宽右端点在一条直线上,请直接写出该直线的表达式;若不是,请说明理由。例4.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=-2x+2,则P表示的函数解析式为;若P:y=-x2-3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=-2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx-4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=10,直接写出l,P表示的函数解析式.参考答案:例1【解析】(1)322xyx,是“奇特函数”;(2)①296xyx;②(7,5)或53,3或715,3或(5,1).试题分析:(1)根据题意列式并化为322xyx,根据定义作出判断.(2)①求出点B,D的坐标,应用待定系数法求出直线OB解析式和直线CD解析式,二者联立即可得点E的坐标,将B(9,3),E(3,1)代入函数6axkyx即可求得这个“奇特函数”的解析式.②根据题意可知,以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP,据此求出点P的坐标.试题解析:(1)根据题意,得,∵,∴.∴.根据定义,是“奇特函数”.(2)①由题意得,.易得直线OB解析式为,直线CD解析式为,由解得.∴点E(3,1).将B(9,3),E(3,1)代入函数,得,整理得,解得.∴这个“奇特函数”的解析式为.②∵可化为,∴根据平移的性质,把反比例函数的图象向右平移6个单位,再向上平移2个单位就可得到.∴关于点(6,2)对称.∵B(9,3),E(3,1),∴BE中点M(6,2),即点M是的对称中心.∴以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP.由勾股定理得,.设点P到EB的距离为m,∵以B、E、P、Q为顶点组成的四边形面积为,∴.∴点P在平行于EB的直线上.∵点P在上,∴或.解得.∴点P的坐标为或或或.考点:1.新定义和阅读理解型问题;2.平移问题;3.反比例函数的性质;4.曲线上点的坐标与方程的关系;5.勾股定理;6.中心对称的性质;7.平行四边形的判定和性质;8.分类思想的应用.例2【解析】(1)根据函数“特征数”写出函数的解析式,再根据平移后一次函数的变化情况写出函数图象向下平移2个单位的新函数的解析式.(2)判断以A、B、C、D四点为顶点的四边形形状,可根据一次函数图象向下平移2个单位与原函数图象的关系,得出AB=2,并确定为平行四边形,由直线相交计算交点坐标后,求出线段BC=2,再根据菱形的判定(邻边相等的平行四边形是菱形)得出,其周长=2×4=8;(3)根据函数“特征数”写出二次函数的解析式,化为顶点式为y=(x-b)2+,确定二次函数的图象不会经过点B和点C,再将菱形顶点A(0,1),D()代入二次函数解析式得出实数b的取值范围.【解析】(1)y=(1分)“特征数”是的函数,即y=+1,该函数图象向下平移2个单位,得y=.(2)由题意可知y=向下平移两个单位得y=∴AD∥BC,AB=2.∵,∴AB∥CD.∴四边形ABCD为平行四边形.,得C点坐标为(,0),∴D()由勾股定理可得BC=2∵四边形ABCD为平行四边形,AB=2,BC=2∴四边形ABCD为菱形.∴周长为8.(3)二次函数为:y=x2-2bx+b2+,化为顶点式为:y=(x-b)2+,∴二次函数的图象不会经过点B和点C.设二次函数的图象与四边形有公共部分,当二次函数的图象经过点A时,将A(0,1),代入二次函数,解得b=-,b=(不合题意,舍去),当二次函数的图象经过点D时,将D(),代入二次函数,解得b=+,b=(不合题意,舍去),所以实数b的取值范围:.例3【解析】试题分析:(1)根据定义可算出y=ax2(a>0)的碟宽为、碟高为,由于抛物线可通过平移y=ax2(a>0)得到,得到碟宽为、碟高为,由此可得碟宽、碟高只与a有关,与别的无关,从而可得.(2)由(1)的结论,根据碟宽易得a的值.(3)①根据y1,容易得到y2.②结合画图,易知h1,h2,h3,…,hn﹣1,hn都在直线x=2上,可以考虑hn∥hn﹣1,且都过Fn﹣1的碟宽中点,进而可得.画图时易知碟宽有规律递减,由此可得右端点的特点.对于“F1,F2,…,Fn的碟宽右端点是否在一条直线上?”,我们可以推测任意相邻的三点是否在一条直线上,如果相邻的三个点不共线则结论不成立,反之则成立,所以可以考虑基础的几个图形关系,利用特殊点求直线方程即可.试题解析:(1)4;1;;.∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△DAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠OCA=∠OCB=∠AOB=×90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴xA=-yA,xB=yB,代入y=ax2,∴A(﹣,),B(,),C(0,),∴AB=,OC=,即y=ax2的碟宽为.①抛物线y=x2对应的a=,得碟宽为4;②抛物线y=4x2对应的a=4,得碟宽为为;③抛物线y=ax2(a>0),碟宽为;④抛物线y=a(x﹣2)2+3(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,∵平移不改变形状、大小、方向,∴抛物线y=a(x﹣2)2+3(a>0)的准碟形与抛物线y=ax2的准碟形全等,∵抛物线y=ax2(a>0),碟宽为,∴抛物线y=a(x﹣2)2+3(a>0),碟宽为.(2)∵y=ax2﹣4ax﹣,∴由(1),其碟宽为,∵y=ax2﹣4ax﹣的碟宽为6,∴=6,解得A=,∴y=x2﹣x﹣=(x﹣2)2﹣3(3)①∵F1的碟宽:F2的碟宽=2:1,∴=,∵a1=,∴a2=.∵y=(x﹣2)2﹣3的碟宽AB在x轴上(A在B左边),∴A(﹣1,0),B(5,0),∴F2的碟顶坐标为(2,0),∴y2=(x﹣2)2.②∵Fn的准碟形为等腰直角三角形,∴Fn的碟宽为2hn,∵2hn:2hn﹣1=1:2,∴hn=hn﹣1=()2hn﹣2=()3hn﹣3=…=()n+1h1,∵h1=3,∴hn=.∵hn∥hn﹣1,且都过Fn﹣1的碟宽中点,∴h1,h2,h3,…,hn﹣1,hn都在一条直线上,∵h1在直线x=2上,∴h1,h2,h3,…,hn﹣1,hn都在直线x=2上,∴Fn的碟宽右端点横坐标为2+.另,F1,F2,…,Fn的碟宽右端点在一条直线上,直线为y=﹣x+5.分析如下:考虑Fn﹣2,Fn﹣1,Fn情形,关系如图2,Fn﹣2,Fn﹣1,Fn的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.∵AB∥x轴,DE∥x轴,GH∥x轴,∴AB∥DE∥GH,∴GH平行且等于FE,DE平行且等于CB,∴四边形GFEH,四边形DCBE都为平行四边形,∴HE∥GF,EB∥DC,∵∠GFI=∠GFH=∠DCE=∠DCF,∴GF∥DC,∴HE∥EB,∵HE,EB都过E点,∴HE,EB在一条直线上,∴Fn﹣2,Fn﹣1,Fn的碟宽的右端点是在一条直线,∴F1,F2,…,Fn的碟宽的右端点是在一条直线.∵F1:y1=(x﹣2)2﹣3准碟形右端点坐标为(5,0),F2:y2=(x﹣2)2准碟形右端点坐标为(2+,),∴待定系数可得过两点的直线为y=﹣x+5,∴F1,F2,…,Fn的碟宽的右端点是在直线y=﹣x+5上.考点:1、等腰直角三角形;2、二次函数的性质;3多点共线例4解析:参考题目:1.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,32),点M是抛物线C2:y=mx2-2mx-3m(m0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PB
本文标题:新定义函数-重庆中考新题型
链接地址:https://www.777doc.com/doc-5205885 .html