您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年辽宁省盘锦市中考数学试卷(解析版)
辽宁省盘锦市2014年中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分)1.(3分)(2014•盘锦)﹣5的倒数是()A.5B.﹣5C.D.﹣考点:倒数.分析:根据倒数的定义可直接解答.解答:解:﹣5的倒数是﹣.故选:D.点评:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.(3分)(2014•盘锦)病理学家研究发现,甲型H7N9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为()A.1.5×10﹣4B.1.5×10﹣5C.0.15×10﹣3D.1.5×10﹣3考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00015=1.5×10﹣4;故选:A.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2014•盘锦)如图,下面几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到几何体从左面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.解答:解:从左面看,得到左边3个正方形,右边1个正方形.故选:C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)(2014•盘锦)不等式组的解集是()A.﹣2≤x<1B.﹣2<x≤1C.﹣1<x≤2D.﹣1≤x<2考点:解一元一次不等式组.分析:根据不等式的性质求出每个不等式的解集,根据找不等式组的解集的规律找出即可.解答:解:由①得:x≥﹣2由②得:x<1,所以不等式组的解集为:﹣2≤x<1.故选:A.点评:本题主要考查利用不等式的性质解一元一次不等式,根据找不等式组的解集的规律找出不等式组的解集是解此题的关键.5.(3分)(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a6考点:单项式乘单项式;幂的乘方与积的乘方.分析:根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.解答:解:原式==4a7,故选:B.点评:本题考查了同底数幂的乘法法则,同底数幂相乘,底数不变指数相加;幂的乘方的法则,幂的乘方,底数不变,指数相乘.6.(3分)(2014•盘锦)甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是()A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲考点:方差;算术平均数.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵甲的方差是8.5,乙的方差是60.5,∴甲的方差小于乙的方差,∴甲的成绩比乙稳定;∵甲、乙的平均成绩分别是145,146,∴平均分相当;故选:D.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(3分)(2014•盘锦)如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5B.12C.13D.14考点:圆锥的计算.分析:首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.解答:解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高==12cm.故选:B.点评:此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.8.(3分)(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或2考点:二次函数的性质.分析:分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程x2+bx+c=1的解的个数.解答:解:分三种情况:点M的纵坐标小于1,方程x2+bx+c=1的解的个数是2;点M的纵坐标等于1,方程x2+bx+c=1的解的个数是1;点M的纵坐标大于1,方程x2+bx+c=1的解的个数是0.故方程x2+bx+c=1的解的个数是0,1或2.故选:D.点评:考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.(3分)(2014•盘锦)如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,DE=,∠EDF=90°,则DF长是()A.B.C.D.考点:相似三角形的判定与性质.分析:设DF和AE相交于O点,由矩形的性质和已知条件可证明∠E=∠F,∠ADE=∠FDC,进而可得到△ADE∽△CDF,由相似三角形的性质:对应边的比值相等即可求出DF的长.解答:解:设DF和AE相交于O点,∵四边形ABCD是矩形,∴∠ADC=90°,∵∠EDF=90°,∴∠ADC+∠FDA=∠EDF+∠FDA,即∠FDC=∠ADE,∵AE⊥CF于点H,∴∠F+∠FOH=90°,∵∠E+∠EOD=90°,∠FOH=∠EOD,∴∠F=∠E,∴△ADE∽△CDF,∴AD:CD=DE:DF,∵AD=3,DC=4,DE=,∴DF=.故选:C.点评:本题考查了矩形的性质、相似三角形的判断和性质以及等角的余角相等的性质,题目的综合性加强,难度中等.10.(3分)(2014•盘锦)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.考点:函数的图象.分析:根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而得出符合题意的图象.解答:解:∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是B.故选:B.点评:此题主要考查了函数图象,根据题意得出关键转折点是解题关键.二、填空题(每小题3分,共24分)11.(3分)(2014•盘锦)计算|﹣|+的值是.考点:实数的运算专题:计算题.分析:原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:原式=﹣+=,故答案为:点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.(3分)(2014•盘锦)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为.考点:概率公式分析:先求出盒子里红色球的个数,再让红色球的个数除以球的总个数即为所求的概率.解答:解:∵盒子里装有白球和红球共14个,其中红球比白球多4个,∴红色球有9个,从中随机摸出一个球,它为红色球的概率是:.故答案为:.点评:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)(2014•盘锦)某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是92分.考点:加权平均数.分析:根据加权平均数的计算公式和面试成绩占20%,笔试成绩占80%,列出算式,再进行计算即可.解答:解:根据题意得:80×20%+95×80%=92(分),答:该候选人的最终得分是92分;故答案为:92.点评:本题考查的是加权平均数的求法,在计算过程中要弄清楚各数据的权.14.(3分)(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.考点:由实际问题抽象出二元一次方程组.分析:设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.解答:解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.点评:此题考查从实际问题中抽出二元一次方程组,注意找出题目蕴含的数量关系.15.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线y=(x>0)交AB于点E,AE:EB=1:3.则矩形OABC的面积是24.考点:反比例函数系数k的几何意义.分析:根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算.解答:解:设E点坐标为(t,),∵AE:EB=1:3,∴B点坐标为(4t,),∴矩形OABC的面积=4t•=24.故答案为:24.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.(3分)(2014•盘锦)如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是2.考点:翻折变换(折叠问题).分析:设A′B=x,根据等边三角形的性质可得∠B=60°,根据直角三角形两锐角互余求出∠BDA′=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2A′B,然后利用勾股定理列式表示出A′D,再根据翻折的性质可得AD=A′D,最后根据AB=BD+AD列出方程求解即可.解答:解:设A′B=x,∵△ABC是等边三角形,∴∠B=60°,∵DA′⊥BC,∴∠BDA′=90°﹣60°=30°,∴BD=2A′B=2x,由勾股定理得,A′D===x,由翻折的性质得,AD=A′D=x,所以,AB=BD+AD=2x+x=4+2,解得x=2,即A′B=2.故答案为:2.点评:本题考查了翻折变换的性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记各性质并用A′B表示出相关的线段是解题的关键.17.(3分)(2014•盘锦)已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是67°.考点:圆周角定理.专题:分类讨论.分析:画出图形,由OC⊥AB,得出∠BOC=90°,根据圆周角定理得出∠CDB=45°,利用三角形的内角和求得∠CEO,进一步得出∠BED解决问题.解答:解:如图,∵OC⊥AB,∴∠BOC=90°,∴∠CDB=45°,∵∠OCD=22°,∴∠CEO=∠BED=68°,∴∠ABD=180°﹣∠CDB﹣∠BED=67°.故答案为:67°.点评:此题考查圆周角定理,三角形的内角和定理的运用,画出图形,直观解决问题.18.(3分)(2014•盘锦)如图,在平面直
本文标题:2014年辽宁省盘锦市中考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-5226352 .html