您好,欢迎访问三七文档
2010年焊接方法及设备考前复习1.焊接电弧的基本特点是什么?1)维持电弧稳定燃烧的电弧电压很低,只有10~50V。2)在电弧中能通过很大的电流,最大可达几千安。3)电弧具有很高的温度,弧柱温度不均匀,中心温度可达5000~30000K。4)电弧能发出很强的光。电弧的光辐射波长为(1.7-50)10-7m,它包括红外线、可见光和紫外线三个部分。2.解释电极表面导电现象――阴极斑点与阳极斑点?阴极斑点的定义:电弧放电时,负电极表面上集中发射电子的光亮极小区域。当阴极材料熔点、沸点较低,而且导热性很强时,即使阴极温度达到材料的沸点开始蒸发,此温度也不足以通过热发射产生足够数量的电子,阴极将进一步自动缩小其导电面积,直到在阴极导电面积前面形成密度很大的正离子空间电荷,形成很大的阴极压降值,足以产生强的电场发射,以补足热发射的不足,向弧柱提供足够的电子流维持电弧燃烧。此时阴极将形成面积更小、电流密度更大的斑点(该斑点的电流密度达106~108A/cm2)来导通电流,这种导电斑点称为阴极斑点。阳极斑点的定义:电弧放电时,正电极表面上集中接受电子的光亮微小区域。阳极的作用是接受电子和由阳极区提供弧柱所需要的0.001/I正离子流。当采用低熔点材料作阳极时(Fe、Cu、A1等),一旦阳极表面某处有熔化和蒸发现象发生时,由于金属的电离能大大低于一般气体的电离能,在有金属蒸气存在的地方,更容易产生热电离而提供正离子流,电子流也更容易从这里进入阳极,阳极表面上的导电区将在这里集中而形成阳极斑点。3.什么是焊接电弧的负载特性?(1)焊接电弧是变阻性负载;(2)焊接电极材料、气体介质、弧长、空载电压、焊接电流等影响焊接电弧稳定性;(3)焊接电弧伏安特性即电特性,包括静态的伏安特性(静特性),焊接电弧动态的伏安特性(动特性)。焊接电弧的静特性是指在电极材料、气体介质、弧长一定的情况下,电弧稳定燃烧时,焊接电流与电弧电压变化的关系。焊接电弧的动特性是指对于一定弧长的电弧,当电弧电流发生连续快速变化时,电弧电压与电流瞬时值之间的关系。4.如何解释焊丝的熔化速度?其影响因素包括?焊丝熔化速度vm通常以单位时间内焊丝的熔化长度(m/h或m/min)或熔化质量(kg/h)表示;熔化系数或称比熔化速度αm,则是指每安培焊接电流在单位时间内所熔化的焊丝质量(g/A·h)。焊丝的熔化速度主要取决于单位时间内用于加热和熔化焊丝的总能量Pm。影响因素:1、焊接电流的影响:电弧热与电流成正比,电阻热与电流平方成正比。电流增大,熔化焊丝的电阻热和电弧热增加,焊丝熔化速度加快。2、电弧电压:随着电弧电压降低(弧长缩短),熔化一定量焊丝所需要的电流减小,亦等量的焊接电流所熔化的焊丝增加。即电弧较短时熔化系数增加。3、焊丝直径:电流一定是,焊丝直径越粗,电阻热热越大,同时电流密度也越大,所以焊丝熔化速度越快。4、焊丝伸出长度:其他条件一定,焊丝伸出长度越长,电阻热越大,通过焊丝传导的热损失减少,焊丝熔化速度加快。5、焊丝材料:焊丝材料不同,电阻率也不同,所产生的电阻热不同,因而对熔化速度的影响也不同,电阻率较大时,会加快焊丝的熔化速度。材料不同还会引起焊丝熔化系数的不同。6、气体介质:气体介质不同,对阴极压降和电弧产热有直接影响。5.试述熔滴过渡时产生飞溅的原因?产生飞溅的原因有以下几个方面:⑴气体爆炸引起的飞溅用涂料焊条焊接及活性气体保护焊时,由于冶金反应在液体内部将产生大量CO气体,气体的析出十分猛烈,尤如爆炸,使液体金属发生粉碎形的熔滴,溅落在焊缝两侧的母材上,成为飞溅。⑵斑点压力引起的飞溅电弧中的带电质点——电子和阳离子,在电场的作用下向两极运动,撞击在两极的斑点上产生机械压力,称为斑点压力。斑点压力是阻碍熔滴过渡的力,焊条端部的熔滴在斑点压力的作用下,十分不稳定,不断地跳动,有时被顶到焊丝的侧面,甚至使熔滴上挠,最终在重力和斑点压力的共同作用下,脱离焊丝成为飞溅。手弧焊和CO2气体保护焊采用直流正接时经常会发生这种类型的飞溅。⑶短路过渡引起的飞溅CO2气体保护焊采用短路过渡时,在短路的最后阶段,如果还继续增大焊接电流,这时的电磁收缩力使熔滴往上飞起,引起强烈飞溅。6.为什么用Ar或富Ar气体作为保护气体时,能够产生喷射过渡,而用CO2气体保护焊时,常常出现排斥过渡?用Ar或富Ar气体作保护气体时,这时电弧电场强度较低,有利于电弧扩张,以产生跳弧现象,使得电弧成为锥状、焊丝端头成为铅笔尖状,而形成射流过渡特点。在Ar+CO2混合气体保护中,当CO2含量较少时,尽管电场强度增加,跳弧电流也增大,但仍可保持射流过渡状态。由CO2或CO2含量较高的混合气体保护时,由于CO2的分解,电弧被冷却,使得电弧电场强度E提高,则电弧难以扩张,也就是电弧被压缩,电弧集中地作用在熔池的底部的局部表面上,对熔滴产生排斥作用。7.什么是短路过渡,它有什么特点?短路过渡:由于电压低,电弧较短,熔滴尚未长成大滴时即与熔池接触而形成短路液桥,在向熔池方向的表面张力及电磁收缩力的作用下,熔滴金属过渡到熔池中去,这样的过渡形式称为短路过渡。短路过渡的特点:1、短路过渡是燃弧、短路交替进行。燃弧时电弧对焊件加热,短路时电弧熄灭,熔池温度降低。因此,调节燃弧时间或熄弧时间即可调节对焊件的热输入,控制母材熔深。2、短路过渡时所使用的焊接电流(平均值)较小,但短路时的峰值电流可达平均电流的几倍,既可避免薄件的焊穿又能保证熔滴顺利过渡,有利于薄板焊接或全位置焊接。3、短路过渡一般采用细丝(或细焊条),焊接电流密度大,焊接速度快,故对焊件热输入低,而且电弧短,加热集中,可减小焊接接头热影响区宽度和焊件变形。8.对接焊缝形状通常用哪些特征参数表示?表示对接焊缝几何形状的参数有焊缝宽度、余高、熔深⑴焊缝宽度:指焊缝表面与母材的交界处称为焊趾。而单道焊缝横截面中,两焊趾之间的距离称为焊缝宽度。⑵余高:指超出焊缝表面焊趾连线上面的那部分焊缝金属的高度称为余高。焊缝的余高使焊缝的横截面增加,承载能力提高,并且能增加射线摄片的灵敏度,但却使焊趾处会产生应力集中。通常要求余高不能低于母材,其高度随母材厚度增加而加大,但最大不得超过3mm。⑶熔深:在焊接接头横截面上,母材熔化的深度称为熔深。一定的熔深值保证了焊缝和母材的结合强度。当填充金属材料(焊条或焊丝)一定时,熔深的大小决定了焊缝的化学万分。不同的焊接方法要求不同的熔深值,例如堆焊时,为了保持堆焊层的硬度,减少母材对焊缝的稀释作用,在保证熔透的前提下,应要求较小的熔深。9.焊接工艺参数对焊缝成形的影响?(一)焊接电流:当其它条件不变时,增加焊接电流,则焊缝厚度和余高都增加,而焊缝宽度则几乎保持不变(或略有增加)。(二)电弧电压:其它条件不变时,电弧电压增长,焊缝宽度显著增加而焊缝厚度和余高将略有减少。(三)焊接速度:焊接速度对焊缝厚度和焊缝宽度有明显的影响。当焊接速度增加时,焊缝厚度和焊缝宽度都大为下降。(四)其它工艺参数及因素对焊缝形状的影响电弧焊除了上述三个主要的工艺参数外,其它一些工艺参数及因素对焊缝形状也具有一定的影响。(1)电极直径和焊丝外伸长当其它条件不变时,减小电极(焊丝)直径不仅使电弧截面减小,而且还减小了电弧的摆动范围,所以焊缝厚度和焊缝宽度都将减小。当焊丝外伸长增加时,电阻热也将增加,焊丝熔化加快,因此余高增加。焊丝直径愈小或材料电阻率愈大时,这种影响愈明显。对细焊丝,特别是不锈钢熔化电极弧焊时,必须注意控制外伸长的稳定。(2)电极(焊丝)倾角焊接时,电极(焊丝)前倾时,电弧力对熔池液体金属后排作用减弱,熔池底部液体金属增厚了,阻碍了电弧对熔池底部母材的加热,故焊缝厚度减小。同时,电弧对熔池前部未熔化母材预热作用加强,因此焊缝宽度增加,余高减小,前倾角度。愈小,这一影响愈明显。电极(焊丝)后倾时,情况与上述相反。(3)焊件倾角焊件相对水平面倾斜时,焊缝的形状可因焊接方向不同而有明显差别。当进行上坡焊时,熔池液体金属在重力和电弧力作用下流向熔池尾部,电弧能深入到加热熔池底部的金属,因而使焊缝厚度和余高都增加。同时,熔池前部加热作用减弱,电弧摆动范围减小,因此焊缝宽度减小。上坡角度愈大,影响也愈明显。上坡角度。6°~12°时,焊缝就会因余高过大,两侧出现咬边而使成形恶化。下坡焊的情况正好相反,即焊缝厚度和余高略有减小,而焊缝宽度略有增加。因此倾角。6°~8°的下坡焊可使表面焊缝成形得到改善,手弧焊焊薄板时,常采用下坡焊。(4)坡口形状当其它条件不变时,增加坡口深度和宽度时,焊缝厚度略有增加,焊缝宽度略有增加,而余高显著减小。(5)焊剂埋弧焊时,焊剂的成分、密度、颗粒度及堆积高度均对焊缝形状有一定影响。(6)保护气体成分气体保护焊时,保护气体的成分以及与此密切相关的熔滴过渡形式对焊缝形状有明显影响。采用不同保护气体进行熔化极气体保护焊直流反接时,焊缝形状的变化。射流过渡氩弧焊总是形成明显蘑菇状焊缝,氩气中加入O2、CO2或H2时,可使根部成形展宽,焊缝厚度略有增加。颗粒状和短路过渡电弧焊则形成的焊缝形状宽而浅。(7)母材的化学成分母材的化学成分不同,在其它工艺因素不变的情况下,焊缝形状不一样,这一点在氩弧焊时特别明显。如三种产地不同的0Cr18Ni19和0Cr18Ni12Mo2不锈钢,用钨极氩弧焊方法焊接,采用相同的焊接工艺参数时,所得焊缝形状的变化。10.焊缝引弧处存在的主要问题及产生原因是什么?起头容易产生的缺陷主要有两个方面:首先由于母材温度低,因而熔池浅、窄、焊条熔化多,母材熔化少,极易造成焊缝成型窄而高,熔深不够,造成焊缝强度较低。其次是起头时,焊条端部套筒形成不良,药皮产生的气体保护作用差,电弧气氛中易侵入空气,造成气孔。收弧处产生的问题:下凹、气孔、裂纹、弧坑。解决措施:埋弧焊时可在收弧处采用收弧板,气保焊时,采用电焊丝收弧或改变脉冲频率。11.埋弧焊的主要优缺点?埋弧焊优点:⑴生产效率高:埋弧焊所用的焊接电流可大到1000A以上,因而电弧的熔深能力和焊丝熔敷效率都比较大。⑵焊接质量好:一方面由于埋弧焊的焊接参数通过电弧自动调节系统的调节能够保持稳定,对焊工操作技术要求不高,因而焊缝成形好、成分稳定;另一方面也与采用熔渣进行保护,隔离空气的效果好有关。⑶劳动条件好:埋弧自动焊时,没有刺眼的弧光,也不需要焊工手工操作。这既能改善作业环境,也能减轻劳动强度。⑷节约金属及电能:对于20~25mm厚以下的焊件可以不开坡口焊接,这既可节省由于加工坡口而损失的金属,也可使焊缝中焊丝的填充量大大减少。同时,由于焊剂的保护,金属的烧损和飞溅也大大减少。由于埋弧焊的电弧热量能得到充分的利用,单位长度焊缝上所消耗的电能也大大降低。埋弧焊缺点:⑴焊接适用的位置受到限制由于采用颗粒状的焊剂进行焊接,因此一般只适用于平焊位置(俯位)的焊接,如平焊位置的对接接头、平焊位置和横焊位置的角接接头以及平焊位置的堆焊等。对于其它位置,则需要采用特殊的装置以保证焊剂对焊缝区的覆盖。⑵焊接厚度受到限制由于埋弧焊时,当焊接电流小于100A时电弧的稳定性通常变差,因此不适于焊接厚度小于1mm以下的薄板。⑶对焊件坡口加工与装配要求较严因为埋弧焊不能直接观察电弧与坡口的相对位置,故必须保证坡口的加工和装配精度,或者采用焊缝自动跟踪装置,才能保证不焊偏。12.试述埋弧焊机的主要功能及分类?埋弧焊机主要功能:(1)焊接电源的作用是向焊接电弧提供电能,以及提供埋弧焊工艺所需要的电气特性,如外特性、动特性等,同时参与焊接参数的调节。(2)机械系统的作用是焊接时使焊丝不断地向电弧区给送,使焊接电弧沿焊缝移动,以及在电弧的前方不断地铺撒焊剂等。机械系统包括:送丝机构、焊车行走机构、机头调节机构、导电嘴。(3)控制系统的作用是实现包括引弧、送丝、移动电弧、停止移动电弧、熄弧等在内的程序自动控制,并进行焊接参数调节和保持焊接参数在焊接过程中稳定,使电弧稳定燃烧。(4)辅助设备是为了使焊缝处于最佳施焊位置,或为了达到某些工艺目的所配置的工艺装置,包括使焊件准确定位和夹紧的焊接夹具,使焊件旋转、倾
本文标题:熔焊考试
链接地址:https://www.777doc.com/doc-5228377 .html