您好,欢迎访问三七文档
•如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()10题图2.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB于G.求证:四边形GECF是菱形.ABCDEFG•已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.•如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.•(1)求证:四边形BCFE是菱形;•(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.如图,在□ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90度,求证四边形DEBF是菱形如图,菱形ABCD中,∠B=60º,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60º,求证:BE=DF;(2)如图2,若∠EAF=60º,求证:△AEF是等边三角形.(2011广东株洲,23,8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF=▲.如图:在四边形ABCD中,E为边AB上的一点,△ADE和△BCE都是等边三角形,P、Q、M、N分别是AB、BC、CD、DA边上的中点,求证:四边形PQMN是菱形.QNABCDEMP在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.(1)如图21-1,当点M在AB边上时,连接BN.求证:△ABN≌△AND(2)如图21-2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.11•如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.•已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:•(1)当t为何值时,PQ∥BC;•(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;•(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;•(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
本文标题:菱形经典训练题
链接地址:https://www.777doc.com/doc-5236236 .html