您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2016年四川省泸州市中考数学试卷(含答案解析)
第1页(共26页)2016年四川省泸州市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.(3分)6的相反数为()A.﹣6B.6C.﹣D.2.(3分)计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.33.(3分)下列图形中不是轴对称图形的是()A.B.C.D.4.(3分)将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×1085.(3分)下列立体图形中,主视图是三角形的是()A.B.C.D.6.(3分)数据4,8,4,6,3的众数和平均数分别是()A.5,4B.8,5C.6,5D.4,57.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.8.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10B.14C.20D.229.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的第2页(共26页)取值范围是()A.k≥1B.k>1C.k<1D.k≤110.(3分)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.11.(3分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.12.(3分)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1B.或1C.或D.或二、填空题:本大题共4小题,每小题3分,共12分13.(3分)分式方程﹣=0的根是.14.(3分)分解因式:2a2+4a+2=.15.(3分)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.16.(3分)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.第3页(共26页)三、本大题共3小题,每小题6分,共18分17.(6分)计算:(﹣1)0﹣×sin60°+(﹣2)2.18.(6分)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.19.(6分)化简:(a+1﹣)•.四.本大题共2小题,每小题7分,共14分20.(7分)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数3690ab27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?21.(7分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?第4页(共26页)(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?五.本大题共2小题,每小题8分,共16分22.(8分)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).23.(8分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.六.本大题共2小题,每小题12分,共24分24.(12分)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;第5页(共26页)(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.25.(12分)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.第6页(共26页)2016年四川省泸州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.(3分)6的相反数为()A.﹣6B.6C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:6的相反数为:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相反数的定义是解题关键.2.(3分)计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.3【分析】直接利用合并同类项的知识求解即可求得答案.【解答】解:3a2﹣a2=2a2.故选C.【点评】此题考查了合并同类项的法则.注意合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.3.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.第7页(共26页)4.(3分)将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=6.【解答】解:5570000=5.57×106.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(3分)下列立体图形中,主视图是三角形的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【解答】解:A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)数据4,8,4,6,3的众数和平均数分别是()A.5,4B.8,5C.6,5D.4,5【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.【解答】解:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选:D.第8页(共26页)【点评】此题考查了众数和平均数,众数是一组数据中出现次数最多的数,注意众数不止一个.7.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.【点评】本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10B.14C.20D.22【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,第9页(共26页)∴△ABO的周长是:14.故选:B.【点评】此题主要考查了平行四边形的性质,正确得出AO+BO的值是解题关键.9.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1B.k>1C.k<1D.k≤1【分析】直接利用根的判别式进而分析得出k的取值范围.【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=b2﹣4ac=4(k﹣1)2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.故选:D.【点评】此题主要考查了根的判别式,正确得出关于k的等式是解题关键.10.(3分)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=1,∴OD=1×sin30°=;如图2,第10页(共26页)∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选:D.【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.11.(3分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()第11页(共26页)A.B.C.D.【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.第12页(共26页)【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.12.(3分)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的
本文标题:2016年四川省泸州市中考数学试卷(含答案解析)
链接地址:https://www.777doc.com/doc-5254530 .html