您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 平行四边形考点及练习
1第十九章平行四边形定义:两组对边分别平行的四边形是平行四边形平行四边形的性质:(1):平行四边形对边相等(即:AB=CD,AD=BC);(2):平行四边形对边平行(即:AB//CD,AD//BC);(3):平行四边形对角相等(即:∠A=∠C,∠B=∠D);(4):平行四边形对角线互相平分(即:OA=OC,OB=OD);判定方法:1.两组对边分别平行的四边形是平行四边形(定义判定法);2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.对角线互相平分的四边形是平行四边形;5.两组对角分别相等的四边形是平行四边形;考点1特殊的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形。(2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。矩形具有________的一切性质。矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。矩形被对角线分成了____________个等腰三角形。(3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形。温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。很多同学容易忽视这个问题。2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形。(2)菱形的性质菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。菱形即是轴对称图形,对称轴有____条。(3)菱形的面积菱形的面积=底×高,菱形的面积=21ab,其中a,b分别为菱形两条对角线的长。菱形被对角线分成了4个全等的直角三角形。2(4)菱形的判定:______________都相等的四边形是菱形;对角线____________的平行四边形是菱形;有一组邻边相等的平行四边形是菱形。温馨提示:在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。3.正方形的性质及判定方法(1)正方形的性质:正方形的四个角都是_____________,四条边都_____________;正方形的两条对角线____________,并且互相垂直平分,每条对角线平分一组对角;正方形即是轴对称图形也是中心对称图形。正方形具有平行四边形、矩形、菱形的一切性质。(2)正方形的判定方法:有一组邻边相等的____是正方形;对角线互相____的矩形是正方形;有一个角是直角的菱形是正方形;对角线________的菱形是正方形。温馨提示:无论是正方形的性质还是正方形的判定,它的中心思想就是正方形即是矩形,又是菱形,如果都从这个出发,则一切的性质与判定就都有了。但要注意在利用对角线判定正方形时,“平分”这个前提,因为只有对角线平分了,此四边形才是平行四边形了,然后再证明是矩形又是菱形。中考热点难点突破例1:如图,菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A.32B.33C.34D.3例2:如图,把矩形ABCD沿EF对折后使两部分重合,若150,则AEF=()A.110°B.115°C.120°D.130°一、选择题(每题3分,共30分)1.(09年河北)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.52.(09年广西南宁)如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.210cmB.220cmC.240cmD.280cm3.(09年宁波市)如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是()BACDABCD3A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形AMON与四边形ABCD是位似图形D.四边形MBCO和四边形NDCO都是等腰梯形第5题图4.(09年杭州)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°5.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1B.2C.2D.37.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.82C.217D.108.已知等腰梯形ABCD的中位线EF的长为6,腰AB的长为5,则等腰梯形的周长为()A.11B.16C.17D.229.如图,□ABCD的周长是28㎝,△ABC的周长是22㎝,则AC的长为()A.6㎝B.12㎝C.4㎝D.8㎝11.(09年甘肃庆阳)如图,菱形ABCD的边长为10cm,DE⊥AB,DE=6,则这个菱形的面积=cm2.12.(09年南充)如图,等腰梯形ABCD中,ADBC∥,6047BADBC°,,则梯形ABCD的周长是.13.(09白银市)如图,四边形ABCD是平行四边形,使它为矩形的条件可以是.14.(09年济宁市)在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,则下底BC的长为cm.ADEPCBF第4题图DBCANMO第3题图DCAB第12、14题图第8题图OADCB第13题图第9题图第11题图ABCDFEOABCD4三、解答题(共60分)21.(本题6分)(’09肇庆)如图,ABCD是菱形,对角线AC与BD相交于O,306ACDBD°,.(1)求证:△ABD是正三角形;(2)求AC的长(结果可保留根号).22.(09年宜宾)已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=2,求菱形ABCD的周长.24.如图:已知在ABC△中,ABAC,D为BC边的中点,过点D作DEABDFAC⊥,⊥,垂足分别为EF,.(1)求证:BEDCFD△≌△;(2)若90A°,求证:四边形DFAE是正方形.25.(本题8分)(09年杭州市)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P.(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.26.如图,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.(1)求∠CBD的度数;(2)求下底AB的长.DEFPBA第25题图CABC第26题图D60°ODCBA第24题图DCBEAFBACDFM第22题图E527.(本题10分)如图,ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BEAD,垂足为E,连结CE,过点E作EFCE,交BD于F.求证:BFFD;28.(2010年宁德市)(本题满分13分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为13时,求正方形的边长.1、在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53°B.37°C.47°D.127°2、(2011江苏省无锡市,21,8′)如图,在ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF。求证:∠BAE=∠CDF.3、(2012浙江省湖州市,20,8分)已知,如图,在□ABCD中,点F在AB的延长线上,且BF=AB,连接FD交BC于点E。(1)说明△DCE≌△FBE的理由;ABCDFEMEADBCNMFEADBCNM6(2)若EC=3,求AD的长。4、如图,四边形ABCD的对角线AC、BD相交于点O,且BD平分AC,若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)5、(2013河南省)如图,在等边三角形ABC中,6BCcm,射线AGBC∥,点E从点A出发沿射线AG以1/cms的速度运动,同时点F从点B出发沿射线BC以2/cms的速度运动,设运动时间为()ts(1)连接EF,当EF经过AC边的中点D时,求证:ADECDF证明:(2)填空:①当为s时,四边形ACFE是菱形;6、(2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.证:BD是梯形ABCD的和谐线;(2)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.ABDCOHG图文并茂7解答:(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.【答案】解:⑴∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.即∠BMA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS).⑵①当M点落在BD的中点时,AM+CM的值最小.②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小.………………9分理由如下:连接MN.由⑴知,△AMB≌△ENB,∴AM=EN.∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.⑶过E点作EF⊥BC交CB的延长线于F,∴∠EBF=90°-60°=30°.设正方形的边长为x,则BF=23x,EF=2x.在Rt△EFC中,∵EF2+FC2=EC2,∴(2x)2+(23x+x)2=213.解得,x=2(舍去负值).∴正方形的边长为2.
本文标题:平行四边形考点及练习
链接地址:https://www.777doc.com/doc-5262921 .html