您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 自适应滤波器的设计与实现
目录摘要.....................................................................................................................................I1绪论…………………………………………………………………………………….11.1引言...............................................................................................................................11.2课题研究意义和目的..............................................................................................11.3国内外研究发展状况..............................................................................................21.4本文研究思路与主要工作......................................................................................42自适应滤波器理论基础.............................................................................................42.1滤波器的基本概念...................................................................................................42.2数字滤波器的基本概念..........................................................................................52.3自适应滤波器的原理..............................................................................................62.4自适应滤波算法种类..............................................................................................82.4.1最小均方(LMS)算法.......................................................................................82.4.2递推最小二乘法(RLS)算法.......................................................................113自适应滤波器的设计...............................................................................................143.1无限冲激响应(IIR)滤波器.............................................................................143.1.1自适应IIR滤波器的基本原理......................................................................143.1.2方程误差结构形式自适应IIR滤波器........................................................143.1.3IIR滤波器的一般结构......................................................................................163.2有限冲激响应(FIR)滤波器...........................................................................173.2.1FIR横向型滤波器的一般结构......................................................................1723.2.2FIR横向性滤波器的工作原理......................................................................173.3IIR滤波器和FIR滤波器的比较...................................................................204基于DSP实现自适应滤波器...............................................................................204.1MATLAB语言介绍................................................................................................204.2MATLAB仿真.........................................................................................................224.2.1MATLAB程序仿真............................................................................................224.2.2仿真结果...............................................................................................................234.3DSP的理论基础..................................................................................................244.4自适应滤波算法的DSP实现............................................................................255总结与展望..................................................................................................................28参考文献...........................................................................................................................29致谢.............................................................................................................................29附录自适应滤波子程序.............................................................................................30I摘要自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信号或需要处理非平稳信号时,自适应滤波器可以提供一种吸引人的解决方法,而且其性能通常远优于用常方法设计的固定滤波器。此外,自适应滤波器还能提供非自适应方法所不可能提供的新的信号处理能力。本文从自适应滤波器研究的意义入手,介绍了自适应滤波器的基本理论思想,具体阐述了自适应滤波器的基本原理、算法及设计方法。自适应滤波器的算法是整个系统的核心。本文中,对两种最基本的自适应算法,即最小均方误差(LMS)算法和递归最小二乘(RLS)算法进行了详细的介绍和分析,并针对两种算法的优缺点进行了详细的比较。同时,分别对FIR结构和IIR结构自适应滤波器做了详细的介绍,比较了FIR结构和IIR结构自适应滤波器的优缺点。最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP实现了自适应滤波器。实验结果表明,该自适应滤波器滤波效果优越。关键词:自适应滤波器;LMS算法;FIR结构滤波器;DSP11绪论1.1引言滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。1.2课题研究意义和目的对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。Windrow等于1967年提出的自适应滤波系统的参数能自动的调整而达到最优状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多像维纳滤波器那样简单,而滤波器性能几乎如卡尔曼滤波器一样好。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系统具有很强的自学习、自跟踪能力和算法的简单易实现性。自适应滤波技术的核心问题是自适应算法的性能问题,提出的自适应算法主要有最小均方(LMS)算法、递归最小二乘(RLS)算法及相应的改进算法如:归一化(NLMS)算法、变步长(SVSLMS)算法、递归最小二乘方格形(RLSL)算法等。这些算法各有特点,适用于不同的场合。研究自适应算法是自适应滤波器的一个关键内容。最小均方误差(LMS,TheleastMeansquare)算法是线性自适应滤波算法中最基本的两类算法之一,其主要思想是基于最小均方误差准则,使滤波器的输出信号与期望输出信号之间的均方误差最小。由于LMS算法简单有效、鲁棒性2好、易于实现,得到了广泛的应用
本文标题:自适应滤波器的设计与实现
链接地址:https://www.777doc.com/doc-5270005 .html