您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 薪酬管理 > 经济数学形成性考核册及答案
1电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题1.___________________sinlim0xxxx.答案:02.设0,0,1)(2xkxxxf,在0x处连续,则________k.答案13.曲线xy+1在)1,1(的切线方程是.答案:2321xy4.设函数52)1(2xxxf,则____________)(xf.答案x25.设xxxfsin)(,则__________)2π(f.答案:2二、单项选择题1.当x时,下列变量为无穷小量的是(D)A.)1ln(xB.12xxC.21xeD.xxsin2.下列极限计算正确的是(B)A.1lim0xxxB.1lim0xxxC.11sinlim0xxxD.1sinlimxxx3.设yxlg2,则dy(B).A.12dxxB.1dxxln10C.ln10xxdD.1dxx4.若函数f(x)在点x0处可导,则(B)是错误的.A.函数f(x)在点x0处有定义B.Axfxx)(lim0,但)(0xfAC.函数f(x)在点x0处连续D.函数f(x)在点x0处可微5.若xxf)1(,则)(xf(B).A.21xB.21xC.x1D.x1三、解答题1.计算极限(1)123lim221xxxx解:原式=)1)(1()2)(1(lim1xxxxx=12lim1xxx=211121(2)8665lim222xxxxx解:原式=)4)(2()3)(2(lim2xxxxx=21423243lim2xxx(3)xxx11lim0解:原式=)11()11)(11(lim0xxxxx=)11(11lim0xxxx=111lim0xx=21(4)423532lim22xxxxx解:原式=32003002423532lim22xxxxx2(5)xxx5sin3sinlim0解:原式=53115355sinlim33sinlim535355sin33sinlim000xxxxxxxxxxx(6))2sin(4lim22xxx解:原式=414)2sin(2lim)2(lim)2sin()2)(2(lim222xxxxxxxxx2.设函数0sin0,0,1sin)(xxxxaxbxxxf,问:(1)当ba,为何值时,)(xf在0x处极限存在?(2)当ba,为何值时,)(xf在0x处连续.解:(1)因为)(xf在0x处有极限存在,则有)(lim)(lim00xfxfxx又bbxxxfxx)1sin(lim)(lim001sinlim)(lim00xxxfxx即1b所以当a为实数、1b时,)(xf在0x处极限存在.(2)因为)(xf在0x处连续,则有)0()(lim)(lim00fxfxfxx又af)0(,结合(1)可知1ba所以当1ba时,)(xf在0x处连续.3.计算下列函数的导数或微分:(1)2222log2xxyx,求y解:2ln12ln22xxyx(2)dcxbaxy,求y解:2)())(()()(dcxdcxbaxdcxbaxy=2)()()(dcxcbaxdcxa=2)(dcxbcad(3)531xy,求y解:2312121)53(23)53()53(21])53[(xxxxy(4)xxxye,求y解:xxxxeexxexy212121)()(3(5)bxyaxsine,求yd解:)(cossin)()(sinsin)(bxbxebxaxebxebxeyaxaxaxax=bxbebxaeaxaxcossindxbxbebxaedxydyaxax)cossin((6)xxyx1e,求yd解:212112312312323)1()()(xxexxexeyxxxdxxxedxyyx)23(d2121(7)2ecosxxy,求yd解:222e22sin)(e)(sin)e()(cos2xxxxxxxxxxy(8)nxxynsinsin,求y解:)(cos)(sin)(sin)(sin])[(sin1nxnxxxnnxxynnnxnxxnncoscos)(sin1(9))1ln(2xxy,求y解:)))1((1(11)1(11212222xxxxxxxy=222212122111111)2)1(211(11xxxxxxxxxx(10)xxxyx212321cot,求y解:)2()()()2(61211sinxxyx06121)1(sin2ln265231sinxxxx65231sin6121)1)(cos1(2ln2xxxxx652321sin6121cos2ln2xxxxx4.下列各方程中y是x的隐函数,试求y或yd(1)1322xxyyx,求yd解:方程两边同时对x求导得:)1()3()()()(22xxyyx0322yxyyyxxyxyy232dxxyxydxyy232d(2)xeyxxy4)sin(,求y解:方程两边同时对x求导得:44)()()cos(xyeyxyxxy4)()1()cos(yxyeyyxxyxyxyyeyxxeyxy)cos(4))(cos(xyxyxeyxyeyxy)cos()cos(45.求下列函数的二阶导数:(1))1ln(2xy,求y解:22212)1(11xxxxy2222222)1(22)1()20(2)1(2)12(xxxxxxxxy(2)xxy1,求y及)1(y解:212321212121)()()1(xxxxxxy2325232521234143)21(21)23(21)2121(xxxxxxy=1《经济数学基础》形成性考核册(二)(一)填空题1.若cxxxfx22d)(,则22ln2)(xxf.2.xxd)sin(cxsin.3.若cxFxxf)(d)(,则xxxfd)1(2cxF)1(2124.设函数0d)1ln(dde12xxx5.若ttxPxd11)(02,则211)(xxP.(二)单项选择题1.下列函数中,(D)是xsinx2的原函数.A.21cosx2B.2cosx2C.-2cosx2D.-21cosx22.下列等式成立的是(C).A.)d(cosdsinxxxB.)1d(dlnxxxC.)d(22ln1d2xxxD.xxxdd13.下列不定积分中,常用分部积分法计算的是(C).A.xxc1)dos(2,B.xxxd12C.xxxd2sinD.xxxd124.下列定积分中积分值为0的是(D).A.2d211xxB.15d161xC.0dcosxxD.0dsinxx5.下列无穷积分中收敛的是(B).A.1d1xxB.12d1xxC.0dexxD.1dsinxx(三)解答题1.计算下列不定积分5(1)xxxde3解:原式cexx)3(13ln1d)e3(x(2)xxxd)1(2解:原式xxxxd212cxxxx252321232121-52342)dx2x(x(3)xxxd242解:原式cxxxxxx221d2)2)(2(2(4)xxd211解:原式)2-d(121121xxcx21ln21(5)xxxd22解:原式)d(222122xxcx232)2(31(6)xxxdsin解:原式xdxsin2cxcos2(7)xxxd2sin解:原式2cos2xxdcxxxdxxx2sin42cos2)2(2cos42cos2(8)xx1)dln(解:原式xxxd1xx)1ln(cxxxxdxxxx)1ln()1ln()111()1ln(2.计算下列定积分(1)xxd121解:原式2111)1(d)1(dxxxx25212)1(21)1(21212112xx(2)xxxde2121解:原式)1d(211xex21211eeex(3)xxxdln113e1解:原式)1d(lnln12123e1xx224ln1231ex(4)xxxd2cos20解:原式xxdsin221206212cos41)2(2sin412sin21202020xxxdxx(5)xxxdlne1解:原式2e1dln21xx)1(4141412121ln21222112eeexdxxxee(6)xxxd)e1(40解:原式xexdxd4040444404055144)(4eeexdexexx《经济数学基础》形成性考核册(三)(一)填空题1.设矩阵161223235401A,则A的元素__________________23a.答案:32.设BA,均为3阶矩阵,且3BA,则TAB2=________.答案:723.设BA,均为n阶矩阵,则等式2222)(BABABA成立的充分必要条件是.答案:BAAB4.设BA,均为n阶矩阵,)(BI可逆,则矩阵XBXA的解______________X.答案:ABI1)(5.设矩阵300020001A,则__________1A.答案:31000210001(二)单项选择题1.以下结论或等式正确的是(C).A.若BA,均为零矩阵,则有BAB.若ACAB,且OA,则CBC.对角矩阵是对称矩阵D.若OBOA,,则OAB2.设A为43矩阵,B为25矩阵,且乘积矩阵TACB有意义,则TC为(A)矩阵.A.42B.24C.53D.353.设BA,均为n阶可逆矩阵,则下列等式成立的是(C).`A.111)(BABA,B.111)(BABAC.BAABD.BAAB4.下列矩阵可逆的是(A).A.300320321B.321101101C.0011D.22115.矩阵444333222A的秩是(B).A.0B.1C.2D.3三、解答题1.计算7(1)01103512=5321(2)001130200000(3)21034521=02.计算7230165421323414212
本文标题:经济数学形成性考核册及答案
链接地址:https://www.777doc.com/doc-5282492 .html