您好,欢迎访问三七文档
-1-第一章绪论1.1引言自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。由于在科学探索和紧急抢险中经常会遇到对与一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。随着科技的发展,对于未知空间和人类所不能直接到达的地域的探索逐步成为热门,这就使机器人的自动避障有了重大的意义。而在机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能,因此,自动避障系统的研发就应运而生。自动避障小车可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物,所以我们的自动避障小车就是基于这一目标而设计的的,该智能小车可以作为机器人的典型代表,它可以分为三大组成部分:传感器检测部分、执行部分、CPU,本次的设计中采用的技术主要有通过编程来控制小车的速度、传感器的有效应用、新型芯片的采用等等。智能作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。所以我们的机器人不仅仅可以实现自动避障功能,还可以扩到展循迹等功能,感知导引线和障碍物等多个方面。1.2设计任务1.2.1设计思想本系统要求自行设计制作一个智能小车,该小车在前进的过程中能够检测到前方障碍并自动避开,达到避障的效果。我的设计思想是采用C8051F310单片机为控制核心,利用位置传感器检测道路上的障碍,通过采集数据并处理后由单片机产生PWM波驱动直流电机对车进行转向和行动控制,控制电动小汽车的自动避障,快慢速行驶,以及自动停车。-2-1.2.2功能概述根据题目中的设计要求,本系统主要由微控制器模块、避障模块、直流电机及其驱动模块电源模块等构成。本系统的方框图如图1-2-2所示:图1-1系统方框图微控制器模块:通过采用C8051F310作为微控制器接受传感器部分收集到的外部信息进行处理,并将结果输出到电机驱动模块控制电机运行。避障模块:采用位置传感器的漫反射检测来检测前方是否有障碍,通过红外光电开关采集到的信号送到微控制器。驱动模块:通过接收微控制器产生的信号来驱动电机运行,达到快慢速行驶,转向控制以及自动停车。电源模块:电源部分是为整个电路模块提供电源,以便能正常工作。第二章硬件电路设计2.1关键元件选择讨论2.1.1单片机的选择C8051F310器件是完全集成的混合信号片上系统型MCU芯片。下面列出了一些主要特性:1.高速、流水线结构的8051兼容的CIP-51内核(可达25MIPS)2.全速、非侵入式的在系统调试接口(片内)3.带模拟多路器真正10位200ksps的25通道单端/差分ADC(C8051F310/1/2/3)4.高精度可编程的25MHz内部振荡器-3-5.16KB(C8051F310/1)或8KB(C8051F312/3/4/5)在系统编程的FLASH存储器6.1280字节片内RAM7.硬件实现的SMBus/I2C、增强型UART和增强型SPI串行接口8.4个通用的16位定时器9.具有5个捕捉/比较模块和看门狗定时器功能的可编程计数器/定时器阵列10.片内上电复位、VDD监视器和温度传感器11.片内电压比较器(2)12.29/25个端口I/O(容许5V输入)C8051F310原理示意图具有片内上电复位、VDD监视器、看门狗定时器和时钟振荡器的C8051F310是真正能独立工作的片上系统。FLASH存储器还具有在系统重新编程能力,可用于非易失性数据存储,并允许现场更新8051固件。用户软件对所有外设具有完全的控制,可以关断任何一个或所有外设以节省功耗。-4-C8051F310封装图片内Siliconlabs二线(C2)开发接口允许使用安装在最终应用系统上的产品MCU进行非侵入式(不占用片内资源)、全速、在系统调试。调试逻辑支持观察和修改存储器和寄存器,支持断点、单步、运行和停机命令。在使用C2进行调试时,所有的模拟和数字外设都可全功能运行。两个C2接口引脚可以与用户功能共享,使在系统调试功能不占用封装引脚。每种器件都可在工业温度范围(-45℃到+85℃)内用2.7V-3.6V的电压工作。端口I/O、/RST和JTAG引脚都容许5V的输入信号电压。C8051F31X有32脚LQFP封装和28脚MLP封装。-5-设计单片机及外围电路电路原理图2.1.2传感器的选择传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”,随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。避障小车是通过传感器系统感知外界环境,在复杂环境中自主移动并完成避障的任务,我们想要实现避障小车的视觉功能有多种方式,可以使用CCD摄像头进行图象采集和识别方法,基于检测对象表面靠近传感元件时的电容变化的电容式接近传感器,根据波从发射到接收的传播过程中所受到的影响来检测物体的接近程度的超声波传感器以及包括一个可以发射红外光的固态发光二极管和一个用作接收器的固态光敏二极管(或光敏三极管)的红外反射式光电传感器。由于CCD传感器的价格、体积和使用方式上并不占优势,而且红外传感器探测视角小,方向性强一些,测量精度高,价格便宜,而且可以在夜间工作,因此红外传感器可以作为视觉应用于移动机器人避障。基于上述要求,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。-6-我们这次采用的小车传感器是红外位置传感器,用漫反射式光电开关进行避障。红外线光电开关(光电传感器)属于光电接近开关的简称,它是利用被检测物体对红外光束的遮光或反射,由同步回路选通而检测物体的有无,其物体不限于金属,对所有能反射光线的物体均可检测。漫反射式光电开关是一种集发射器和接收器于一体的传感器,当有被检测物体经过时,将光电开关发射器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。2.1.3电机类型的选择电动机的作用是将电能转换为机械能,电动机分为交流电动机和直流电动机两大类,所以我们在避障小车的电机选择上就有步进电机和直流电机两种选择方式,现介绍如下:(1)交流电机的优点是具有快速启停能力,如果负荷不超过步进电机所能提供的动态转矩值,就能够立即使步进电机启动或反转。另一个优点是转换精度高,使得在速度、位置等控制领域用步进电机来控制变的非常的简单。(2)直流电动机的优点是具有良好的调速性能,可以用于许多调速性能要求较高的场合调速范围宽广,调速特性平滑,过载能力较强,热动和制动转矩较大。通过上述比较,虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。步进电机价格较高,驱动方面也较复杂,由于我们设计的小车对于精度要求不是特别高,电路和控制相对简单,同时价格低廉所以我们最后还是选择选择直流电机。2.1.4电机驱动电路的选择我们在设计小车的电机驱动电路的过程中,通过在网络和图书室中查阅相关资料,我们的选择可以分为3种,分别介绍如下:(1)使用功率三极管作为功率放大器的输出控制直流电机。它的优点在于线性型驱动的电路结构和原理简单,成本低,加速能力强,但是缺点也十分明显,如功率损耗大,特别是低速大转距运行时,通过电阻R的电流大,发热厉害,损耗大,对于小车的长时间运行不利。-7-(2)采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整.这个方法的优点是电路较为简单,缺点是继电器的响应时间慢,易损坏,寿命较短,可靠性不高。(3)采用由双极性管组成的H桥电路,用单片机控制晶体管使之工作在占空比可调的开关状态,精确调整电机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高,H桥电路保证了可以简单地实现转速和方向的控制,而且它的电子开关的速度很快,稳定性也很高,是一种广泛采用的调速技术。通过上述比较后,我们在选择时候选择的是方式3,采用由双极性管组成的H桥电路的驱动电路。下面我们对H桥驱动电路进行简短的介绍分析:图2-1所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图2-1及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。图2-1H桥驱动电路要使电机运转,必须使对角线上的一对三极管导通。如图2-2所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。图2-3所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过-8-电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。图2-2H桥驱动电机顺时针转动图2-3H桥驱动电机逆时针转动驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。图2-4所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图2-4所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。)图2-4具有使能控制和方向逻辑的H桥电路-9-采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。如果DIR-L信号为0,DIR-R信号为1,并且使能信号是1,那么三极管Q1和Q4导通,电流从左至右流经电机(图2-5);如果DIR-L信号变为1,而DIR-R信号变为0,那么Q2和Q3将导通,电流则反向流过电机。图2-5使能信号与方向信号的使用最后我们决定采用元件组成H桥电路来组成驱动电路。我们可以用单片机控制晶体管使之工作在占空比可调的开关状态,精确调整电机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高,H桥电路保证了可以简单地实现转速和方向的控制,而且它的电子开关的速度很快,稳定性也很高。设计驱动电路原理图如下:-10-2.1.5电源的选择对于一个实际的电子系统,要认真的分析它的电源需求。不仅仅是关心输入电压,输出电压和电流,还要仔细考虑总的功耗,电源实现的效率,电源部分对负载变化的瞬态响应能力,关键器件对电源波动的容忍范围以及相
本文标题:论文-红外避障小车
链接地址:https://www.777doc.com/doc-5293795 .html