您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 《正弦、余弦函数的图象》教案全面版
《正弦、余弦函数的图象》教案教学目的:知识目标:(1)利用单位圆中的三角函数线作出Rxxy,sin的图象,明确图象的形状;(2)根据关系)2sin(cosxx,作出Rxxy,cos的图象;(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神;教学重点:用单位圆中的正弦线作正弦函数的图象;教学难点:作余弦函数的图象,周期性;授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:1.弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。2.正、余弦函数定义:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离r(02222yxyxr)则比值ry叫做的正弦记作:rysin比值rx叫做的余弦记作:rxcos3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有MPrysin,OMrxcos向线段MP叫做角α的正弦线,有向线段OM叫做角α的余弦线.二、讲解新课:1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.(1)函数y=sinx的图象第一步:在直角坐标系的x轴上任取一点1O,以1O为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).ry)(x,P第二步:在单位圆中画出对应于角6,0,3,2,…,2π的正弦线正弦线(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.把角x()xR的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.(2)余弦函数y=cosx的图象用几何法作余弦函数的图象,可以用“反射法”将角x的余弦线“竖立”[把坐标轴向下平移,过1O作与x轴的正半轴成4角的直线,又过余弦线1OA的终点A作x轴的垂线,它与前面所作的直线交于A′,那么1OA与AA′长度相等且方向同时为正,我们就把余弦线1OA“竖立”起来成为AA′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x轴上相应的点x重合,则终点就是余弦函数图象上的点.]也可以用“旋转法”把角的余弦线“竖立”(把角x的余弦线O1M按逆时针方向旋转2到O1M1位置,则O1M1与O1M长度相等,方向相同.)根据诱导公式cossin()2xx,还可以把正弦函数x=sinx的图象向左平移2单位即得余弦函数y=cosx的图象.(课件第三页“平移曲线”)正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)(2,1)(,0)(23,-1)(2,0)余弦函数y=cosxx[0,2]的五个点关键是(0,1)(2,0)(,-1)(23,0)(2,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.优点是方便,缺点是精确度不高,熟练后尚可以3、讲解范例:例1作下列函数的简图(1)y=1+sinx,x∈[0,2π],(2)y=|sinx|,(3)y=sin|x|例2用五点法作函数2cos(),[0,2]3yxx的简图.例3分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:1(1)sin;2x15(2)cos,(0).22xx三、巩固与练习四、小结:本节课学习了以下内容:1.正弦、余弦曲线几何画法和五点法2.注意与诱导公式,三角函数线的知识的联系五、课后作业:作业:补充:1.分别用单位圆中的三角函数线和五点法作出y=sinx的图象2.分别在[-4,4]内作出y=sinx和y=cosx的图象3.用五点法作出y=cosx,x[0,2]的图象y=cosxy=sinx23456--2-3-4-5-6-6-5-4-3-2-65432-11yx-11oxy六、板书设计:第一章三角函数4-1.4.1正弦、余弦函数的图象(2)1、教学目标:2、使学生学会用“五点(画图)法”作正弦函数、余弦函数的图象。3、通过组织学生观察、猜想、验证与归纳,培养学生的数学能力。4、通过营造开放的课堂教学氛围,培养学生积极探索、勇于创新的精神。5、教学重点和难点:6、重点:用“五点(画图)法”作正弦函数、余弦函数的图象。7、难点:确定五个关键点。8、教学过程:9、思考探究10、复习(1)关于作函数,x∈〔0,2π〕的图象,你学过哪几种方法?(2)观察我们上一节课用几何法作出的函数y=sinx,x∈〔0,2π〕的图象,你发现有哪几个点在确定图象的形状起着关键作用?为什么?(用几何画板显示通过平移正弦线作正弦函数图像的过程)2、“五点(画图)法”在精确度要求不高时,先作出函数y=sinx的五个关键点,再用平滑的曲线将它们顺次连结起来,就得到函数的简图。这种作图法叫做“五点(画图)法”。(1)、请你用“五点(画图)法”作函数y=sinx,x∈〔0,2π〕的图象。解:按五个关键点列表:描点、连线,画出简图。(用几何画板画出Y=sinx的图像,显示动画)(2)、试用“五点(画图)法”作函数y=cosx,x∈〔0,2π〕的图象。解:按五个关键点列表:描点、连线,画出简图。x02ππ23π2πSinx010-10x02ππ23π2πCosx10-101一、自主学习例1.画出下列函数的简图:(1)y=1+sinx,x∈〔0,2π〕(2)y=-cosx,x∈〔0,2π〕解:(1)按五个关键点列表:描点、连线,画出简图。(2)按五个关键点列表:x02ππ23π2πSinx010-101+Sinx121012-25O32π2π2πgx=sinxfx=1+sinx1.510.5-0.5-1123456O2π32π2πfx=cosx描点、连线,画出简图。二、合作学习●探究1如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到(1)y=1+sinx,x∈〔0,2π〕的图象;(2)y=sin(x-π/3)的图象?小结:函数值加减,图像上下移动;自变量加减,图像左右移动。●探究2如何利用y=cosx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx,x∈〔0,2π〕的图象?小结:这两个图像关于X轴对称。●探究3如何利用y=cosx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx,x∈〔0,2π〕的图象?小结:先作y=cosx图象关于x轴对称的图形,得到y=-cosx的图象,再将y=-cosx的图象向上平移2个单位,得到y=2-cosx的图象。●探究4不用作图,你能判断函数y=sin(x-3π/2)和y=cosx的图象有何关系吗?请在同一坐标系中画出它们的简图,以验证你的猜想。小结:sin(x-3π/2)=sin[(x-3π/2)+2π]=sin(x+π/2)=cosx这两个函数相等,图象重合。三、归纳小结1、五点(画图)法(1)作法先作出五个关键点,再用平滑的曲线将它们顺次连结起来。x02ππ23π2πCosx10-101-Cosx-1010-12-2510gx=cosxfx=-cosxO2π32π2π(2)用途只有在精确度要求不高时,才能使用“五点法”作图。(3)关键点横坐标:0π/2π3π/22π2、图形变换平移、翻转等四、布置作业P53:A组1P54:B组1你曾落过的泪,最终都会变成阳光,照亮脚下的路。(舞低杨柳楼心月歌尽桃花扇底风)我不去想悠悠别后的相逢是否在梦中,我只求此刻铭记那杨柳低舞月下重阁,你翩若惊鸿的身影,和那桃花扇底悄悄探出的半面妆容与盈盈水眸。用宁静的童心来看,这条路是这样的:它在两条竹篱笆之中。篱笆上开满了紫色的牵牛花,在每个花蕊上,都落了一只蓝蜻蜓。你必得一个人和日月星辰对话,和江河湖海晤谈,和每一棵树握手,和每一株草耳鬓厮磨,你才会顿悟宇宙之大、生命之微、时间之贵我一直以来都弄不明白,为什么不管做了多么明智合理的选择,在结果出来之前,谁都无法知道它的对错。到头来我们被允许做的,只是坚信那个选择,尽量不留下后悔而已。看不见的,是不是就等于不存在?记住的,是不是永远不会消失?每一个黄昏过后,大家焦虑地等待,却再也没有等到月亮升起。潮水慢慢平静下来,海洋凝固成一面漆黑的水镜,没有月亮的夜晚,世界变得清冷幽寂.但是,最深的黑夜即将过去,月亮出来了……记忆的冰川在岁月的侵蚀下,渐渐崩塌消融。保持着最初的晶莹的往事,已经越来越稀少。灼灼其华,非我桃花。苍苍蒹葭,覆我其霜。芦荻不美,桃花艳妖。知我怜我,始觉爱呵。只要春天还在我就不会悲哀纵使黑夜吞噬了一切太阳还可以重新回来只要生命还在我就不会悲哀纵使陷身茫茫沙漠还有希望的绿洲存只要明天还在我就不会悲哀冬雪终会悄悄融化春雷定将滚滚而来孤独,寂静,在两条竹篱笆之中,篱笆上开满了紫色的牵牛花,在每个花蕊上,都落了一只蓝蜻蜓。一袭粉色拖地蝶园纱裙,长发垂至脚踝,青丝随风舞动。眸若点漆,水灵动人,冰肤莹彻,气质脱俗,眼波转动间却暗藏睿智锋芒。淡雅如仙,迎风而立的她,宛若来自天堂的。暖有时候猛烈地指责别人说谎,其实是太渴望那消息真实。原来时间也会失误和出现意外,并因此迸裂,在某个房间里留下永恒的片段。尘世里,总有些什么,让我们不自觉地微笑,使我们的坚硬,在一瞬间变得柔软。婴儿的梦呓,幼童的稚语,夕阳下相互搀扶的老人.......那天黄昏,紫岚在栖身的石洞口默黩地注视着落日。余晖变幻着色调,嫣红、水红、玫瑰红,转瞬便消失在天涯尽头;草原被铅灰色的暮霭垄断了,苍茫沉静。孔明灯真的很漂亮,就像是星星流过天河的声音。你既然已经做出了选择,又何必去问为什么选择。原来岁月太长,可以丰富,可以荒凉。能忘掉结果,未能忘掉遇上。我不可抑制地在脑海勾勒这样的景象:黄昏。风。无垠的旷野。一棵树。----就那么一棵树,孤零零的。风吹动它的每一片叶子,每一片叶子,都在骨头里作响。天高路远,是永不能抵达的摸样......孤单时,仍要守护心中的思念,有阴影的地方,必定有光最好的时光,是经由记忆粉饰的过往。我们会不由自主地忘记伤痛,欢天喜地地投向下一个天国。过往的人事,在前行的途中偶尔显身于记忆,又不可挽留地悄然远去。谁也阻止不了忘记的步伐每一次的离别都在夏天,明明是最火热的季节,却承载着最盛大的离别。睡着你的秘密,醒着你的自由。它的篱笆结实而疏朗,有清风徐徐穿过。人生有很多选择,一个选择又决定下个选择,所以,选择的时候只要是自己内心所想的,也值了,怕的就是,明明不愿意,又不得不选择。人生最遗憾的,莫过于轻易地放弃了不该放弃的,固执地坚持了不该坚持的早春二月,乍暖还寒的时候,鹅黄隐约,新绿悄绽,昭示着生命的勃勃,那是旭日般的青春;阳春三月,杏
本文标题:《正弦、余弦函数的图象》教案全面版
链接地址:https://www.777doc.com/doc-5308031 .html