您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2017年山东省菏泽市中考数学试卷(解析版)
第1页(共26页)2017年山东省菏泽市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.()﹣2的相反数是()A.9B.﹣9C.D.﹣2.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣83.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.4.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是()A.平均数是﹣2B.中位数是﹣2C.众数是﹣2D.方差是75.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°6.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()第2页(共26页)A.x>2B.x<2C.x>﹣1D.x<﹣17.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)8.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:x3﹣x=.10.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.第3页(共26页)11.菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为cm2.12.一个扇形的圆心角为100°,面积为15πcm2,则此扇形的半径长为.13.直线y=kx(k>0)与双曲线y=交于A(x1,y1)和B(x2,y2)两点,则3x1y2﹣9x2y1的值为.14.如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O1的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O12的纵坐标为.三、解答题(共10小题,共78分)15.计算:﹣12﹣|3﹣|+2sin45°﹣(﹣1)2.16.先化简,再求值:(1+)÷,其中x是不等式组的整数解.17.如图,E是▱ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.18.如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道第4页(共26页)⑪号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算⑪号楼的高度CD.19.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?20.如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A、B、C、D四个等级,并绘制了如图不完整的扇形统计图和条形统计图.第5页(共26页)根据以上信息,解答下列问题:(1)本次评估随即抽取了多少甲商业连锁店?(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据;(3)从A、B两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.22.如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.23.正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为ts.第6页(共26页)①设BF=ycm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.第7页(共26页)2017年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.()﹣2的相反数是()A.9B.﹣9C.D.﹣【考点】6F:负整数指数幂;14:相反数.【分析】先将原数求出,然后再求该数的相反数.【解答】解:原数=32=9,∴9的相反数为:﹣9;故选(B)2.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7;故选:C.3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【考点】U2:简单组合体的三视图.第8页(共26页)【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图是两个正方形,俯视图是三个正方形,不符合题意;B、左视图与俯视图不同,不符合题意;C、左视图与俯视图相同,符合题意;D左视图与俯视图不同,不符合题意,故选:C.4.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是()A.平均数是﹣2B.中位数是﹣2C.众数是﹣2D.方差是7【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据平均数、中位数、众数及方差的定义,依次计算各选项即可作出判断.【解答】解:A、平均数是﹣2,结论正确,故A不符合题意;B、中位数是﹣2,结论正确,故B不符合题意;C、众数是﹣2,结论正确,故C不符合题意;D、方差是9,结论错误,故D符合题意;故选:D.5.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根第9页(共26页)据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B=20°=∠BAC∴∠BAA′=180°﹣70°﹣45°=65°,故选:C.6.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣1【考点】FD:一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故选D.7.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()第10页(共26页)A.(0,)B.(0,)C.(0,2)D.(0,)【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;LB:矩形的性质.【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选B.第11页(共26页)8.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象;H2:二次函数的图象.【分析】根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y轴负半轴.故选A.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分第12页(共26页)解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).10.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.【考点】A3:一元二次方程的解.【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.【解答】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:011.菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为18cm2.【考点】L8:菱形的性质.【分析】根据菱形的性质以及锐角三角函数关系得出BE的长,即可得出菱形的面积.【解答】解:如图所示:过点B作BE⊥DA于点E∵菱形ABCD中,∠A=60°,其周长为24cm,∴∠C=60°,AB=AD=6cm,∴BE=AB•sin60°=3cm,∴菱形ABCD的面积S=AD×
本文标题:2017年山东省菏泽市中考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-5319406 .html