您好,欢迎访问三七文档
碳纳米管看及其产业化姓名:刘佳班级:化学二班学号:2008600213在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbonnanotube”,即碳纳米管,又名巴基管。1993年。S.Iijima等和DS。Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。1997年,AC.Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。初步结果表明:碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。适当加热,氢气就可以慢慢释放出来。研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。结构:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成,端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。力学性能由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。碳纳米管是目前可制备出的具有最高比强度的材料。碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的长径比一般在1000:1以上,是理想的高强度纤维材料。莫斯科大学的研究人员曾将碳纳米管置于1011MPa的水压下(相当于水下10000米深的压强),由于巨大的压力,碳纳米管被压扁。撤去压力后,碳纳米管像弹簧一样立即恢复了形状,表现出良好的韧性。这启示人们可以利用碳纳米管制造轻薄的弹簧,用在汽车、火车上作为减震装置,能够大大减轻重量。此外,碳纳米管的熔点是目前已知材料中最高的。导电性能碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。常用矢量Ch表示碳纳米管上原子排列的方向,其中Ch=na1+ma2,记为(n,m)。a1和a2分别表示两个基矢。(n,m)与碳纳米管的导电性能密切相关。对于一个给定(n,m)的纳米管,如果有2n+m=3q(q为整数),则这个方向上表现出金属性,是良好的导体,否则表现为半导体。对于n=m的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1万倍。传热性能碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。其他性能碳纳米管还具有光学和储氢等其他良好的性能,正是这些优良的性质使得碳纳米管被认为是理想的聚合物复合材料的增强材料。制备:目前常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法),固相热解法、辉光放电法和气体燃烧法等以及聚合反应合成法。应用前景氢气被很多人视为未来的清洁能源。但是氢气本身密度低,压缩成液体储存又十分不方便。碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。适当加热,氢气就可以慢慢释放出来。研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,再把碳层腐蚀掉,就可以制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。有些碳纳米管本身还可以作为纳米尺度的导线。这样利用碳纳米管或者相关技术制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。利用碳纳米管的性质可以制作出很多性能优异的复合材料。这样的材料强度高、模量高、耐高温、热膨胀系数小、抵抗热变性能强。碳纳米管还给物理学家提供了研究毛细现象机理最细的毛细管,给化学家提供了进行纳米化学反应最细的试管。碳纳米管上极小的微粒可以引起碳纳米管在电流中的摆动频率发生变化,利用这一点,1999年,巴西和美国科学家发明了精度在10-17kg精度的“纳米秤”,能够称量单个病毒的质量。随后德国科学家研制出能称量单个原子的“纳米秤”。在中国的发展1999年,北京大学电子系薛增泉教授的研究组在将单壁碳纳米管组装竖立在金属表面,组装出性能良好的扫描隧道显微镜用探针。同年,中科院金属所成会明博士合成出高质量的碳纳米材料,使我国新型储氢材料研究跃上世界先进水平。1999年巴西和美国科学家用碳纳米管制备了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;不久,德国科学家研制出称量单个原子重量的“纳米秤”,打破了先前的纪录。同年,美国科学家在单个分子上实现有机开关,证实在分子水平上可以发展电子和计算装置。中科院沈阳金属所的卢柯小组在纳米材料及相关亚稳材料领域取得了突出的成绩。他发展的利用非晶完全晶化制备致密纳米合金的方法已与惰性气体蒸发后原位加压法、高能球磨法成为当前制备金属纳米块材的三种主要方法之一。他们发现的纳米铜的室温超塑延展性,被评为2000年中国十大科技新闻。从发现纳米碳管始,科学家们不断研制出越来越细的纳米碳管。2000年,解思深组利用常现电弧放电方法制备出内径为0.5nm的碳纳米管。同年,香港科技大学的汤子康博士即宣布发现了世界上最细的纯碳纳米碳管¾0.4nm碳管,这一结果已达到碳纳米管的理论极限值。12月柏林的马克斯—玻恩研究所研制出1nm直径的薄壁纳米管,创出薄壁纳米管研制的新记录。2001年初,中国科技大学朱清时院士的研究组首次直接拍摄到能够分辨出化学键的C60单分子图像,这种单分子直接成像技术为解析分子内部结构提供了有效的手段,使科学家可以人工“切割”和重新“组装”化学键,为设计和制备单分子级的纳米器件奠定了基础。3月,美国佐治亚理工学院留美中国学者王中林教授的研究组利用高温固体气相法,在世界上首次合成了独特形态且无缺陷的半导体氧化物纳米带状结构。这是继纳米管、纳米线之后纳米家族增加的新的成员。它有望解决纳米管在大规模生产时稳定性的问题,并在纳米物理研究和纳米器件应用上有重要的作用。6月,香港科技大学沈平教授的研究组在单根纯碳纳米碳管中观察到超导特性。这一观察表明,当纳米碳管细到一定程度时,其材料性质将发生突变。从应用上来讲,纳米碳管超导性的发现,将有助解决电子在集成半导体器件中传输时的发热问题。由上可见,在纳米基础研究领域,中国并不落后。自90年代初,科技部、国家自然科学基金委、中国科学院等单位就启动了有关纳米材料的攀登计划、国家重点基础研究项目等,投入数千万元资金支持纳米基础研究;中国的纳米科学家,在国际上取得了一系列令人瞩目的成果,相继在《Science》、《Nature》等权威杂志上发表了高水平的论文,使中国在纳米材料基础研究方面,尤其是纳米结构的控制合成方面,走在比较前沿的位置,继美、日、德之后,位居世界第四。但是,在纳米器件上总体来说研究层次还不是很高,手段离国外还有很大的差距。我国纳米技术目前产业化状况。涂料中的应用:碳纳米管具有很好的导电性且拥有较大的长径比,因而很适合做导电填料。国内外学者对碳纳米管的导电特性进行了大量研究,其中Ebbesen和Tombler等人对单根碳纳米管的研究表明:由于结构差异,碳纳米管可能是导体,也可能是半导体。Saito等人通过理论分析认为,根据碳纳米管的直径和螺旋角度,大约有1/3是金属导电性的,而2/3是半导体性的。Dai等人指出:完美碳纳米管的电阻要比有缺陷的碳纳米管的电阻小一个数量级或更多。Ugarte等人发现:碳纳米管的径向电阻大于轴向电阻,并且这种电阻的各向异性随着温度的降低而增大。Huang等人通过计算认为:温度在1.5×10-4K时,直径为0.7nm的碳纳米管具有超导性,预示着碳纳米管在超导领域里的应用前景。目前,碳纳米管在导电涂料中的应用研究主要是通过改变碳纳米管的结构及含量,改进碳纳米管在导电涂料中的分散以及对碳纳米管进行表面处理来平__衡导电涂料的导电性和其他各项性能。中国科学院成都有机化学研究所对碳纳米管在导电涂料中的应用进行了系统的研究。研究发现:碳纳米管作为导电涂料的导电介质时,其管径越小,所制得的导电涂料导电性越好。碳纳米管作为导电介质,其最佳长径比约为250。当碳纳米管长径比大于250时,所得涂料的导电性随长径比的增大而减小;当碳纳米管长径比小于250时,所得涂料的导电性随长径比的增大而增大。当碳纳米管含量为0.5%~8.0%时,涂料处于抗静电区域;碳纳米管含量大于8.0%时,涂料处于导电区域。范凌云等人制备了一系列丙烯酸酯/碳纳米管导电涂料,考察了涂料相应的电性能、硬度、附着力、柔韧性等。结果表明:碳纳米管的含量对涂料的电性能有很大影响。在一定范围内,其含量越高,涂料的导电性能越好,但在含量超过25%以后,碳纳米管/丙烯酸酯涂料的导电性能几乎不再变化。沈阳金纳新材料有限公司发明了一种导电、电磁屏蔽涂料,其特征在于:该涂料为含有一维纳米碳材料(包括纳米碳管和纳米碳纤维)和粘接剂的组合物,涂覆于制品表面可以制备具有导电、电磁屏蔽功能的涂层。据介绍,台湾的技术人员以涂银碳纳米管、涂镍碳纳米管及碳纳米管作为导电填料,比较了几种填料制备的电磁屏蔽涂料的屏蔽性能和力学性能。结果表明:使用碳纳米管可以大大降低填料使用量,在碳纳米管表面涂上一层薄金属膜可以大大提高碳纳米管的导电性,使之满足电磁屏蔽材料的要求。在碳纳米管水性导电涂料方面,同济大学研发了含碳纳米管水性聚氨酯导电涂料,该导电涂料的涂膜体积电阻率为1×10-5~4×10-4Ω/cm,表面电阻率为1×10-1~2×102Ω,附着力0级,屏蔽效能为70~85dB。在碳纳米管抗静电涂料方面,冯辉昌等人研制了储油罐碳纳米管导静电防腐涂料,该研究以碳纳米管和云母粉复合作为导静电涂料的导电体,在提高涂膜导静电性能的同时解决了以往导静电涂料抗静电性能与耐油耐热防腐性能难以兼顾的技术难题。余颖等人采用热压和喷涂两种方法在聚丙烯和聚苯乙烯两种塑料表面涂覆了碳纳米管,研究了这两种方法对碳纳米管覆膜塑料表面所达到的抗静电性的影响。两种方法制成的抗静电覆膜都能大大降低塑料的表面电阻,但喷涂法更能使碳纳米管在塑料表面均匀分散,从而使塑料表面抗静电性能更加稳定。碳纳米管薄膜的吸附式气体传感器
本文标题:碳纳米管论文
链接地址:https://www.777doc.com/doc-5336354 .html