您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2011年山东省泰安市中考数学试卷(解析版)
2011年山东省泰安市中考数学试卷—解析版一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1、(2011•泰安)的倒数是( )A、B、C、D、考点:倒数。专题:计算题。分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1(a≠0),就说a(a≠0)的倒数是.解答:解:的倒数是﹣,故选D.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•泰安)下列运算正确的是( )A、3a2+4a2=7a4B、3a2﹣4a2=﹣a2C、3a•4a2=12a2D、考点:整式的除法;合并同类项;单项式乘单项式。专题:计算题。分析:根据单项式除单项式的法则、合并同类项以及整式的除法法则计算即可.解答:解:A、3a2+4a2=7a2,故本选项错误;B、3a2﹣4a2=﹣a2,故本选项正确;C、3a•4a2=12a3,故本选项错误;D、(3a2)2÷4a2=a2,故本选项错误;故选B.点评:本题主要考查多项式除以单项式运算、合并同类项以及整式的除法法则,牢记法则是关键.3、(2011•泰安)下列图形:其中是中心对称图形的个数为( )A、1B、2C、3D、4考点:中心对称图形。专题:图表型。分析:根据轴对称图形与中心对称图形的概念求解.解答:解:一图是轴对称图形,二图是中心对称图形,三图是轴对称图形,四图即是中心对称图形,也是周对称图形;所以,中心对称图形的个数为2.故选B.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、(2011•泰安)第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1340000000人.这个数据用科学记数法表示为( )A、134×107人B、13.4×108人C、1.34×109人D、1.34×1010人考点:科学记数法—表示较大的数。分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1340000000=1.34×109人.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、(2011•泰安)下列等式不成立的是( )A、m2﹣16=(m﹣4)(m+4)B、m2+4m=m(m+4)C、m2﹣8m+16=(m﹣4)2D、m2+3m+9=(m+3)2考点:提公因式法与公式法的综合运用。专题:因式分解。分析:由平方差公式,提公因式以及完全平方公式分解因式的知识求解即可求得答案.解答:解:A、m2﹣16=(m﹣4)(m+4),故本选项正确;B、m2+4m=m(m+4),故本选项正确;C、m2﹣8m+16=(m﹣4)2,故本选项正确;D、m2+3m+9≠(m+3)2,故本选项错误.故选D.点评:此题考查了因式分解的知识.注意因式分解的步骤:先提公因式,再用公式法分解,注意分解要彻底.6、(2011•泰安)下列几何体:其中,左视图是平行四边形的有( )A、4个B、3个C、2个D、1个考点:简单几何体的三视图。分析:左视图是从几何体的左面看所得到的图形.解答:解:圆柱的左视图是长方形,长方形是一个特殊的平行四边形;圆锥的左视图是三角形;棱柱的左视图是长方形,长方形是一个特殊的平行四边形;长方体的左视图是长方形,长方形是一个特殊的平行四边形;故左视图是平行四边形的有3个,故选:B,点评:此题主要考查了几何体的三视图,解决此类图的关键是由立体图形得到三视图,以及考查学生空间想象能力.7、(2011•泰安)下列运算正确的是( )A、B、C、D、考点:二次根式的混合运算。专题:计算题。分析:根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.解答:解:A.∵=5,∴故此选项错误;B.∵4﹣=4﹣3=,∴故此选项错误;C.÷==3,∴故此选项错误;D.∵•==6,∴故此选项正确.故选:D.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.8、(2011•泰安)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为( )A、25°B、30°C、20°D、35°考点:平行线的性质;对顶角、邻补角;三角形的外角性质。专题:计算题。分析:根据平角的定义求出∠ACR,根据平行线的性质得出∠FDC=∠ACR=70°,求出∠AFD,即可得到答案.解答:解:∵∠β=20°,∠ACB=90°,∴∠ACR=180°﹣90°﹣20°=70°,∵l∥m,∠FDC=∠ACR=70°,∴∠AFD=∠FDC﹣∠A=70°﹣45°=25°,∴∠a=∠AFD=25°,故选A.点评:本题主要考查对平行线的性质,三角形的外角性质,对顶角、邻补角等知识点的理解和掌握,求出∠AFD的度数是解此题的关键.9、(2011•泰安)某校篮球班21名同学的身高如下表身高cm180186188192208人数(个)46542则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm)( )A、186,186B、186,187C、186,188D、208,188考点:众数;中位数。分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.解答:解:众数是:188cm;中位数是:188cm.故选C.点评:本题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10、(2011•泰安)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为( )A、B、C、D、考点:垂径定理;勾股定理。专题:探究型。分析:连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=则AD==,OD=,再利用勾股定理即可得出结论.解答:解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选A.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11、(2011•泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则列方程正确的是( )A、B、C、D、考点:由实际问题抽象出二元一次方程组。专题:应用题。分析:根据甲乙两种奖品共30件,可找到等量关系列出一个方程,在根据甲乙两种奖品的总价格找到一个等量关系列出一个方程,将两个方程组成一个二元一次方程组.解答:解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共30件,所以x+y=30因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=400由上可得方程组:故选B.点评:本题考查根据实际问题抽象出方程组:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12、(2011•泰安)若点A的坐标为(6,3)O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A、(3,﹣6)B、(﹣3,6)C、(﹣3,﹣6)D、(3,6)考点:坐标与图形变化-旋转。专题:作图题。分析:正确作出A旋转以后的A′点,即可确定坐标.解答:解:由图知A点的坐标为(6,3),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,点A′的坐标是(3,﹣6).故选A.点评:本题考查了图形的旋转,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.13、(2011•泰安)已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是( )A、m>0,n<2B、m>0,n>2C、m<0,n<2D、m<0,n>2考点:一次函数图象与系数的关系。专题:探究型。分析:先根据一次函数的图象经过二、四象限可知m<0,再根据函数图象与y轴交与正半轴可知n﹣2>0,进而可得出结论.解答:解:∵一次函数y=mx+n﹣2的图象过二、四象限,∴m<0,∵函数图象与y轴交与正半轴,∴n﹣2>0,∴n>2.故选D.点评:本题考查的是一次函数的图象,即直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.14、(2011•泰安)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是( )A、5πB、4πC、3πD、2π考点:圆锥的计算。分析:半圆的面积就是圆锥的侧面积,根据半圆的弧长等于圆锥底面圆的周长,即可求得圆锥底面圆的半径,进而求得面积,从而求解.解答:解:侧面积是:×π×22=2π.底面的周长是2π.则底面圆半径是1,面积是π.则该圆锥的全面积是:2π+π=3π.故选C.点评:本题主要考查了圆锥的计算,正确理解圆锥的底面的周长等于展开图中扇形的弧长是解题的关键.15、(2011•泰安)如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是( )A、B、C、D、考点:平行线分线段成比例;平行四边形的性质。分析:由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.点评:本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.16、(2011•泰安)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的的编号相同的概率为( )A、B、C、D、考点:列表法与树状图法。分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.解答:解:画树状图得:∴一共有9种等可能的结果,两次所取球的的编号相同的有3种,∴两次所取球的的编号相同的概率为=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17、(2011•泰安)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A、16B、17C、18D、19考点:相似三角形的判定与性质;正方形的性质。专题:计算题。分析:由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答;解答:解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为=8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选B.点评:本题考查了正方
本文标题:2011年山东省泰安市中考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-5337808 .html