您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 三次方程解法被称为-卡尔达诺公式
三次方程解法被称为“卡尔达诺公式”或“卡当公式”流传开来.卡尔达诺公布的解法可简述如下:设一元三次方程为则通过以代替变量,可将上述方程化为如下简约方程:x3+px=q(p,q为正数).(1)卡尔达诺以方程x3+6x=20为例说明这一方法,他得到的解是x=过同样的程序得到他还求出x3+px+q=0和x3+q=px(p,q为正数)的公式解,就是说他已经能解任何形式的三次方程了.毫无疑问,这里包含了塔尔塔利亚的工作.但需要说明的是,他们像当时其他数学家一样,解方程只求正根,所以解法还是不完善的.管会受到多大的良心的责备”,把这两个根相乘,会得25-(-15)=40.于是他写道:“算术就是这样神秘地搞下去的,它的目标,正如常言所说,是又精致又不中用的.”他既承认负数有平方根,又怀疑它的合法性,因此称它为“诡变量”.但不管怎样,虚数毕竟在卡尔达诺那里诞生了.他还进一步指出,方程(指实系数方程)的虚根是成对出现的.三次方程成功地解出之后,卡尔达诺的学生费拉里(L.Ferrari,1522—1565)受到启发,很快解出了四次方程,解法也发表在卡尔达诺《大术》中.下面用现代符号表出.设方程为x4+bx3+cx2+dx+e=0.(4)移项,得x4+bx3=-cx2-dx-e,右边为x的二次三项式,若判别式为0,则可配成x的完全平方.解这个三次方程,设它的一个根为y0,代入(5),由于两边都是x的完全平方形式,取平方根,即得解这两个关于x的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的.在卡尔达诺之后,韦达对三次方程和四次方程解法作了进一步改进.1591年发表的《分析术引论》(Inartemanalyticemisagoge)中,他是这样解三次方程的:对于x3+bx2+cx+d=0,结果得到简约三次方程y3+py+q=0.他和卡尔达诺一样,只考虑方程的正根.韦达不仅研究方程解法,还努力寻找方程的根与系数的关系,在《论方程的识别与修正》(Deaequationumrecog-nitoneetemendatjone,写于1591年,出版于1615年)中,他提出了四个定理,后人为了纪念这位大数学家,称之为韦达定理.二次方程的韦达定理是我们经常使用的,就对方程理论作出重要贡献的另一位数学家是笛卡儿.他承认方程的负根,并研究了多项式方程的正根和负根个数的规律,得到著名的笛卡儿符号法则:多项式方程f(x)=0的正根个数等于方程系数的变号次数,或比此数少一正偶数;负根个数等于f(-x)的系数的变号次数,或少于此数一个正偶数.在这里,m重根是看作m个根的.实际上,正根个数和负根个数都可表成n-2p的形式,其中n是f(x)或f(-x)的系数变号次数,p为0,1,2…,p的取值要使n-2p非负.笛卡儿还研究了方程的根的个数同方程次数的关系,认为n次方程至多有n个根.在讨论三次方程时,他得到如下结论:若一有理系数三次方程有一个有理根,则此方程可表为有理系数因子的乘积.他的另一项重要成果是现今所谓因子定理:f(x)能为(x-a)整除(a>0),当且仅当a是f(x)=0的一个根,所有这些成就都是在笛卡儿《方法论》(DiscoursdelaMéthod,1637)的附录《几何》(LaGéometrie)中出现的.除了方程以外,二项式定理的发现也在代数史上占有一席之地.实际上,指数为正整数的二项式定理(即(a+b)n在n为正整数时的展开式)曾被不同民族多次独立发现.11世纪的中国人贾宪和15世纪的阿拉伯数学家卡西(al-Kāshī)各自得到如下形式的三角形这个三角形特点是,左右两行的数都是1,中间每个数为肩上两数之和.在欧洲,德国数学家阿皮安努斯(P.Apianus,1495—1552)最早给出这个三角形(1527年),1544年左右,施蒂费尔引入“二项式系数”这个名称,并指出怎样从(1+a)n-1来计算(1+a)n.1653年,帕斯卡写成《算术三角形》(Traitédutrianglearithmétique)一书,从上述三角形出发,详细讨论了二项展开式的系数.该书于1665年出版后,影响很大.由于帕斯卡在数学界的威望,人们习惯地称此三角形为帕斯卡三角形.实际上,他的功绩主要是通过组合公式给出了二项式系数,即(a+b)n牛顿(T.Newton,1643—1727)进一步认识到,这个公式不仅适用于指数为正整数的二项展开式,而且当指数为分数或负数时,同样适用.他把二项式定理推广到分指数和负指数的情形,指出这三种形式的二项展开式第1项都是1,后面各项系数及字母指数也具有相同的变化规律:设n,m为正整数,则如果括号里是a-b,则第k+1项的符号由(-1)k决定.它们的区别只对于一般的一元三次方程,早在1545年出版的一本数学著作ArsMagma中已有介绍,现在称三次方程的求根公式为卡丹公式.我们这里来简单介绍一下.还有如下解法:设一元三次方程为则通过以代替变量,可将上述方程化为如下简约方程:设是该简约方程的三个根.令称为简约方程的判别式.令,,,则卡丹公式为这里两公式中的取值要相同,且立方根的选取要满足条件然后通过解线性方程组就可求出简约方程的根.三次方程求根公式设一元三次方程在复数集中的根是x1,x2,x3,那么其中。早在古巴伦的文献中,已有一些三次、四次的数字方程。7世纪初期,我国唐朝的数学家土孝通所著的《缉古算经》一书记载了不少三次方程。阿拉伯人也很早就研究过三次方程。但是在上千年的漫长岁月里,人们寻求一般三次方程的求根公式没有进展。直到1494年,意大利数学家帕克里还宣称一般的三次方程是不可能解的。1500年波伦亚的数学教授菲洛终于找到了形如的三次方程的一般解法。但他向外保密,只是秘传给他的一个学生。在菲洛死后近十年,这个学生以上述三次方程求解问题向当时意大利数学家塔塔里亚挑战。塔塔里亚也找到了方程(1)的一般解法,并公开了结果。但他也不肯公布推导过程。这件事为数学物理教授卡丹所知,便要塔塔里亚把解题的秘诀告诉他,塔塔里亚在卡丹发誓绝对保密的情况下,将证明方法告诉卡丹。卡丹不顾他的誓言,把这个解法发表在他的《重要的艺术》一书中,为此塔塔里亚向卡丹提出责难,引起双方一场论战。三次方程求根公式现在仍称为卡丹公式。塔塔里亚与卡丹的解法如下:作变换,使方程(1)化成令,得解这个二次方程,得出后,就可得到y的六个值,然后再利用关系式就可得到x的值。根据卡丹公式,我们就能解一般的三次方程:。首先把它改写为。令就可化成缺平方项的三次方程这里。
本文标题:三次方程解法被称为-卡尔达诺公式
链接地址:https://www.777doc.com/doc-5355736 .html