您好,欢迎访问三七文档
第5章化学动力学初步5.1化学反应速率5.2浓度对反应速率的影响5.3反应级数5.4反应机理5.5温度对化学反应速率的影响5.6基元反应的速率理论5.7催化剂与催化作用5.1化学反应速率(ChemicalReactionRates)宏观:热力学、动力学热力学:过程的能量交换(H)、过程的自发方向(G)、过程的限度(K)(△Gø=-RTlnK)—可能性。动力学:反应速率(快慢)、反应机理(怎样进行)—现实性。例:N2(g)+3H2(g)=2NH3(g)△Hø=-92.22kJ.mol-1(放热)△Gø=-33.0kJ.mol-1△Gø=-RTlnKK=6.1105但实际上,R.T.,常压,观察不到反应。反应速率和反应机理是化学动力学研究的核心问题。反应速率因不同的反应而异:火药爆炸—瞬间;中和反应—几秒;高温固相合成无机材料、有机合成、高分子合成—小时;橡胶老化—年;石油、煤的形成—几百万年…热力学不涉入时间,当然不涉及反应速率,也不涉及反应机理。一、反应速率定义—单位时间内反应物或产物浓度改变的量的绝对值。(一)平均速率和瞬间速率:例:H2O2(aq)=H2O(l)+½O2(g)测定实验中O2(g)的析出量,可计算H2O2浓度变化,并按下式计算出反应速率(平均速率):=-(H2O2)/t=-[c2(H2O2)–c1(H2O2)]/t计算结果列于教材p.107,表6.1.可见:t,c(H2O2),.vvI-H2O2(aq)→H2O(l)+½O2(g)教材p.107,表6.1.H2O2(aq)=H2O(l)+½O2(g)或:N2O5(g)=2NO2(g)+½O2(g)令Ot(无限小),得瞬时速率:dtOHdCtOHCvt)()(lim22220显然,v和v的单位是1313mindmmolsdmmol或作出H2O2的c—t曲线(教材p.108,图6.1),得到0—40min的平均速率:13min015.04080.020.080.020.0dmmoltv某一时刻的瞬时速率可用该时间对应的曲线点上的斜率表示,并且可以得到:CBAvvv(二)t,c(H2O2),v(三)实验测定速率(净反应速率)=|正反应速率-逆反应速率|(四)对于单向反应,反应的开始的瞬间的瞬时速率称为初速率v0.(五)测定反应速率的实验方法将在物理化学课程中学习。(六)由于一个反应可以用不同的反应物或产物作参照物浓度变化来表示反应速率,为了避免混乱,IUPAC建议对于反应:eEdDbBaA定义瞬时速率为:dtVdCvii平均速率为:tVCvii(5.1)(5.2)(5.1)、(5.2)式中,vi为计量系数a、b、d、c,且对反应物取负值,v为正值。对产物取正值,以保证v和对于一个反应,在某一瞬间其v有确定值(不论以哪一种反应_物或产物的浓度变化表示);在某一时间间隔内,v也是定值。例:H2O2=H2O+½O2分解反应(教材p.107表6-1)0–20min的_V(H2O2)=c(H2O2)/[(-1)t]=(0.40–0.80)/[(-1)(20–0)]=0.020mol.dm-3.min-1_V(O2)=c(H2O2)/[(½)t]=(0.20–0)/[(½)(20–0)]_=0.020mol.dm-3.min-1=V(H2O2)N2O5(g)=2NO2(g)+½O2(g)浓度随时间变化曲线N2O5(g)=2NO2(g)+½O2(g)NO2浓度-时间关系二、影响反应速率的因素(一)不同反应的反应速率不同(取决于反应物本身的性质)(二)同一反应1.浓度;2.气体反应:压力;3.温度;4.使用催化剂。5.2浓度对反应速率的影响一、速率方程(式)(动力学方程式)例:CO(g)+NO2(g)→CO2(g)+NO(g)该反应是基元反应(一步进行的反应)。瞬时速率定义式:v=-dc(NO2)/dt=-dc(CO)/dtCO(g)+NO2(g)→CO2(g)+NO(g)甲组乙组丙组(CO)/mol.dm-3(NO2)/mol.dm-3v0/mol.dm-3.s-1(CO)/mol.dm-3(NO2)/mol.dm-3v0/mol.dm-3.s-1(CO)/mol.dm-3(NO2)/mol.dm-3v0/mol.dm-3.s-10.100.100.0050.100.200.0100.100.300.0150.200.100.0100.200.200.0200.200.300.0300.300.100.0150.300.200.0300.300.300.0450.400.100.0200.400.200.0400.400.300.060由浓度与初速率v0数据可见:1.从纵向看,甲、乙、丙各组内数据,2NOC不变,1倍,ov1倍:v∝cCO.2.从各横行看,各行内coc不变,2NOC1倍,ov1倍,v∝cNO2.合并写为:v=kcCOcNO2或:v=k(CO)(NO2)coc速率方程式(动力学方程式)v=k(CO)(NO2)上式称为该反应的速率方程式,k称为“反应速率常数”,又称“比速常数”,意义是速率方程式中各种物质浓度均为1mol.dm-3时的反应速率;其量纲由速率方程确定;k大小取决于反应物的本质,而与浓度无关,当其它条件相同时,k,则v;通常,T,则k。速率方程式表示反应速率与浓度的关系。二、基元反应与非基元反应基元反应—即一步完成的反应。非基元反应—分若干个步骤进行的反应,又称“复杂反应”或“复合反应”。(一)基元反应1.反应速率方程可由方程式直接写出:例如:基元反应CO(g)+NO2(g)=CO2(g)+NO(g)V正=k正(CO)(NO2)V逆=k逆(CO2)(NO)2.平衡常数K与速率常数k正、k逆的关系:V正=V逆→平衡;(B)→[B]k正(CO)(NO2)=k逆(CO2)(NO)[CO2][NO]/[CO)][NO2]=k正/k逆=K3.根据速率方程式,由任一组实验数据可以求出速率常数的值例上述反应,取甲组第一横行数据:k=v/[(CO)(NO2)]=0.005mol.dm-3.s-1/[0.100.10(mol.dm-3)2]=0.5mol-1.dm3.s-1(二级反应量纲)有了k值,代入速率方程式v=k(CO)(NO2),可计算出任一时刻CO、NO2浓度对应的瞬时速率。(二)速率方程式必须以实验为依据确定;反应是否基元反应,也必须以实验为依据确定。三、质量作用定律在基元反应中,反应速率与反应物物质的量浓度的计量系数次方的乘积成正比。对于基元反应:dDbBaA则:baBAkv)()(且可能有bn,am而m、n值只能由实验确定。即:质量作用定律不能直接应用于非基元反应,但能应用于构成该非基元反应的每一个具体步骤(基元反应)。nmBAkv)()(对于“非基元反应”:dDbBaA则:例如:S2O82-+3I-=2SO42-+I3-非基元反应实验测得:v=k(S2O82-)(I-)而不是v=k(S2O82-)(I-)35.3反应级数(Orderofreaction)一、反应级数定义:反应aA+bB=dD+eE实验测得速率方程式为:v=k(A)m(B)n则m称为反应物A的分级数(PartialorderofA);n称为反应物B的分级数(PartialorderofB);(m+n)为反应的级数(Orderofreaction)。反应级数↑,表示浓度对反应速率影响↑反应级数是一个宏观物理量。例1.基元反应CO(g)+NO2(g)=CO2(g)+NO(g)v=k(CO)(NO2)对CO:1级反应;对NO2:1级反应;该反应为2级反应。2级反应k量纲:mol-1.dm3.s-1.对于基元反应:m=a,n=b,m+n=a+b,且a、b均为简单整数。例2.S2O82-+3I-=2SO42-+I3-非基元反应v=k(S2O82-)(I-)对S2O82-1级反应,对I-1级反应,该反应为2级反应。例3.H2O2(aq)=H2O(l)+½O2(g)v=k(H2O2)1级反应例4.核裂变2262224Ra→Rn+He888621级反应例5.H2(g)+Cl2(g)=2HCl(g)v=k(H2)(Cl2)1/2(链式反应机理)对H2:1级反应,对Cl2:1/2级反应,反应为3/2级反应。例6.2Na(s)+2H2O(l)=2NaOH(aq)+H2(g)v=k(Na)0=k0级反应——反应速率与反应物浓度无关。二、反应级数与反应速率变化规律例,设某个一级反应为:A→P)()(AkdtAdv速率方程(微分式)kdt)A()A(d在(A)0~(A),(t)0~(t)区间取定积分:ln(A)-ln(A)0=-ktln(A)=ln(A)0-kt)A(O)A(tokdt)A()A(d换底,tkAAO303.2)lg()lg((5.5)lg(A)–t图呈直线(见教材p.117图6-8),是一级反应的特征。当(A)=1/2(A)0时,对应于t=t1/2,即反应进行一半所需的时间,称为“半衰期”,t1/2可由(5.5)式求得。lg(A)=lg(A)0-kt/2.303(5.5)lg[(A)/(A)0]=-kt/2.303lg[½(A)0/(A)0]=-kt1/2/2.303lg(½)=-kt1/2/2.303t1/2=0.693/k或t1/2=ln2/k(一级反应)(5.6)一、二、三和零级反应的速率变化规律见教材p.116–119.反应:AB1级反应和2级反应的速率方程、k和t1/21级反应(教材p.116,图6-8)2级反应(教材p.118,图6-9)速率方程-dcA/dt=kcA-dcA/dt=kcA2c–t方程lncA=-kt+ln(cA)01/cA=kt+1/(cA)0线性方程lncA-t1/cA-tkk=-s(s斜率)k量纲:s-1k=sk量纲:mol-1.dm3.s-1t1/2t1/2=2.303lg2/k=0.693/k(常数)t1/2=1/[k(cA)0](不是常数)反应:AB0级反应和3级反应的速率方程、k和t1/20级反应(教材p.116,图6-7)3级反应(教材p.118,图6-10)速率方程-dcA/dt=kcA0-dcA/dt=kcA3c–t方程cA=-kt+(cA)01/cA2=2kt+1/(cA)02线性方程cA-t1/cA2-tkk=-s(s斜率)k量纲:mol1.dm-3.s-1k=s/2k量纲:mol-2.dm6.s-1t1/2t1/2=(cA)02/2k(常数)t1/2=3/[2k(cA)02](不是常数)1级反应lncA-t、2级反应1/cA-t和0级反应cA-t关系图1级反应(A)–t图2级反应(A)–t图0级反应(A)–t图从微观看,各反应为分子经碰撞而发生。反应过程中所包含的最低分子数目,称为“反应分子数”。例:CO(g)+NO2(g)CO2(g)+NO(g)反应分子数=2=反应级数对于基元反应:反应分子数=反应级数微观宏观(从实验测定的速率方程得到)对于非基元反应,反应分子数无意义。三、反应分子数(只适用于基元反应)5.4反应机理即反应所经历的具体历程(步骤)。按反应机理划分:基元反应—即一步完成的反应非基元反应—分若干个步骤进行的反应,又称“复杂反应”或“复合反应”,由若干个基元反应构成。基元反应可直接应用“质量作用定律”,写出速率方程;非基元反应每个具体步骤(基元反应)也可应由质量作用定律,但整个非基元反应的速率方程不能直接使用质量作用定律,而要由实验测定。例1.H2(g)+Br2(g)→2HBr(g)实验测得其速率方程为:v=k(H2)(Br2)1/2反应级数=1.5现认为这个非基元反应包括3个基元反应:(1)Br2→2Brk1大(快)(2)Br+H2→HBr+Hk2小(慢)(3)H+Br2→HBr+Brk3大(快)(链式反应机理)步骤(2)Br+H2→HBr
本文标题:化学反应速率
链接地址:https://www.777doc.com/doc-5356894 .html