您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > 流体输配管网知识总结与归纳
1-4试比较气相、液相、多相流这三类管网的异同点。答:相同点:各类管网构造上一般都包括管道系统、动力系统、调节装置、末端装置以及保证管网正常工作的其它附属设备。不同点:①各类管网的流动介质不同;②管网具体型式、布置方式等不同;③各类管网中动力装置、调节装置及末端装置、附属设施等有些不同。[说明]随着课程的进一步深入,还可以总结其它异同点,如:相同点:各类管网中工质的流动都遵循流动能量方程;各类管网水力计算思路基本相同;各类管网特性曲线都可以表示成ΔP=SQ2+Pst;各类管网中流动阻力之和都等于动力之和,等等。不同点:不同管网中介质的流速不同;不同管网中水力计算的具体要求和方法可能不同;不同管网系统用计算机分析时其基础数据输入不同,等等。1-5比较开式管网与闭式管网、枝状管网与环状管网的不同点。答:开式管网:管网内流动的流体介质直接与大气相接触,开式液体管网水泵需要克服高度引起的静水压头,耗能较多。开式液体管网内因与大气直接接触,氧化腐蚀性比闭式管网严重。闭式管网:管网内流动的流体介质不直接与大气相通,闭式液体管网水泵一般不需要考虑高度引起的静水压头,比同规模的开式管网耗能少。闭式液体管网内因与大气隔离,腐蚀性主要是结垢,氧化腐蚀比开式管网轻微。枝状管网:管网内任意管段内流体介质的流向都是唯一确定的;管网结构比较简单,初投资比较节省;但管网某处发生故障而停运检修时,该点以后所有用户都将停运而受影响。环状管网:管网某管段内流体介质的流向不确定,可能根据实际工况发生改变;管网结构比较复杂,初投资较节枝状管网大;但当管网某处发生故障停运检修时,该点以后用户可通过令一方向供应流体,因而事故影响范围小,管网可靠性比枝状管网高。2-6流体输配管网水力计算的目的是什么?答:水力计算的目的包括设计和校核两类。一是根据要求的流量分配,计算确定管网各管段管径(或断面尺寸),确定各管段阻力,求得管网特性曲线,为匹配管网动力设备准备好条件,进而确定动力设备(风机、水泵等)的型号和动力消耗(设计计算);或者是根据已定的动力设备,确定保证流量分配要求的管网尺寸规格(校核计算);或者是根据已定的动力情况和已定的管网尺寸,校核各管段流量是否满足需要的流量要求(校核计算)。2-7水力计算过程中,为什么要对并联管路进行阻力平衡?怎样进行?“所有管网的并联管路阻力都应相等”这种说法对吗?答:流体输配管网对所输送的流体在数量上要满足一定的流量分配要求。管网中并联管段在资用动力相等时,流动阻力也必然相等。为了保证各管段达到设计预期要求的流量,水力计算中应使并联管段的计算阻力尽量相等,不能超过一定的偏差范围。如果并联管段计算阻力相差太大,管网实际运行时并联管段会自动平衡阻力,此时并联管段的实际流量偏离设计流量也很大,管网达不到设计要求。因此,要对并联管路进行阻力平衡。对并联管路进行阻力平衡,当采用假定流速法进行水力计算时,在完成最不利环路的水力计算后,再对各并联支路进行水力计算,其计算阻力和最不利环路上的资用压力进行比较。当计算阻力差超过要求值时,通常采用调整并联支路管径或在并联支路上增设调节阀的办法调整支路阻力,很少采用调整主干路(最不利环路)阻力的方法,因为主干路影响管段比支路要多。并联管路的阻力平衡也可以采用压损平均法进行:根据最不利环路上的资用压力,确定各并联支路的比摩阻,再根据该比摩阻和要求的流量,确定各并联支路的管段尺寸,这样计算出的各并联支路的阻力和各自的资用压力基本相等,达到并联管路的阻力平衡要求。“所有管网的并联管路阻力都应相等”这种说法不对。在考虑重力作用和机械动力同时作用的管网中,两并联管路的流动资用压力可能由于重力重用而不等,而并联管段各自流动阻力等于其资用压力,这种情况下并联管路阻力不相等,其差值为重力作用在该并联管路上的作用差。2-8水力计算的基本原理是什么?流体输配管网水力计算大都利用各种图表进行,这些图表为什么不统一?答:水力计算的基本原理是流体一元流动连续性方程和能量方程,以及管段串联、并联的流动规律。流动动力等于管网总阻力(沿程阻力+局部阻力)、若干管段串联和的总阻力等于各串联管段阻力之和,并联管段阻力相等。流体输配管网水力计算大都利用各种图表进行,这些图表为什么不统一的原因是各类流体输配管网内流动介质不同、管网采用的材料不同、管网运行是介质的流态也不同。而流动阻力(尤其是沿程阻力)根据流态不同可能采用不同的计算公式。这就造成了水力计算时不能采用统一的计算公式。各种水力计算的图表是为了方便计算,减少烦琐、重复的计算工作,将各水力计算公式图表化,便于查取数据,由于各类流体输配管网水力计算公式的不统一,当然各水力计算图表也不能统一。2-9比较假定流速法、压损平均法和静压复得法的特点和适用情况。答:假定流速法的特点是先按照合理的技术经济要求,预先假定适当的管内流速;在结合各管段输送的流量,确定管段尺寸规格;通常将所选的管段尺寸按照管道统一规格选用后,再结合流量反算管段内实际流速;根据实际流速(或流量)和管段尺寸,可以计算各管段实际流动阻力,进而可确定管网特性曲线,选定与管网相匹配的动力设备。假定流速法适用于管网的设计计算,通常已知管网流量分配而管网尺寸和动力设备未知的情况。压损平均法的特点是根据管网(管段)已知的作用压力(资用压力),按所计算的管段长度,将该资用压力平均分配到计算管段上,得到单位管长的压力损失(平均比摩阻);再根据各管段的流量和平均比摩阻确定各管段的管道尺寸。压损平均法可用于并联支路的阻力平衡计算,容易使并联管路满足阻力平衡要求。也可以用于校核计算,当管道系统的动力设备型号和管段尺寸已经确定,根据平均比摩阻和管段尺寸校核管段是否满足流量要求。压损平均法在环状管网水力计算中也常常应用。静压复得法的特点是通过改变管段断面规格,通常是降低管内流速,使管内流动动压减少而静压维持不变,动压的减少用于克服流动的阻力。静压复得法通常用于均匀送风系统的设计计算中。2-10为何天然气管网水力计算不强调并联支路阻力平衡?答:天然气管网水力计算不强调并联支路阻力平衡,可以从以下方面加以说明:(1)天然气末端用气设备如燃气灶、热水器等阻力较大,而燃气输配管道阻力相对较小,因此各并联支路阻力相差不大,平衡性较好;(2)天然气管网一般采用下供式,最不利环路是经过最底层的环路。由于附加压头的存在,只要保证最不利环路的供气,则上层并联支路也一定有气;(3)各并联支路在燃气的使用时间上并非同时使用,并且使用时也并非都在额定流量工况下使用,其流量可以通过用户末端的旋塞,阀门等调节装置根据需要调节。签于以上原因,天然气管网无需强调并联支路的阻力平衡。3-3机械循环室内采暖系统的水力特征和水力计算方法与重力循环系统有哪些一致的地方和哪些不同之处?①作用压力不同:重力循环系统的作用压力:双管系统ΔP=gH(ρH-ρg),单管系统:NHP1i1iii-g)(,总的作用压力:ΔPzh=ΔPh+ΔPf;机械循环系统的作用压力:P+ΔPh+ΔPf=ΔPl,ΔPh、ΔPf与P相比可忽略不计。∴P=ΔPl,但在局部并联管路中进行阻力手段时需考虑重力作用。②计算方法基本相同:首先确定最不利环路,确定管径,然后根据阻力平衡,确定并联支路的管径,最后作阻力平衡校核。3-4室外热水供热管的水力计算与室内相比有哪些相同之处和不同之处?答:相同之处:(1)计算的主要任务相同:按已知的热煤流量,确定管道的直径,计算压力损失;按已知热媒流量和管道直径,计算管道的压力损失;按已知管道直径和允许压力损失,计算或校核管道中流量。(2)计算方法和原理相同:室内热水管网水力计算的基本原理,对室外热水管网是完全适用的。在水力计算程序上,确定最不利环路,计算最不利环路的压力损失,对并联支路进行阻力平行。不同之处:(a)最不利环路平均比摩阻范围不同,室内Rpj=60~120Pa/m,室外Rpj=40-80Pa/m。(b)水力计算图表不同,因为室内管网流动大多于紊流过渡区,而室外管网流动状况大多处于阻力平方区。(c)在局部阻力的处理上不同,室内管网局部阻力和沿程阻力分开计算,而室外管网将局部阻力折算成沿程阻力的当量长度计算。(d)沿程阻力在总阻力中所占比例不同,室内可取50%,室外可取60~80%。3-5开式液体管网水力特征与水力计算与闭式液体管网相比,有哪些相同之处和不同之处?答:从水力特征上看,开式液体管网有进出口与大气相通,而闭式液体管网(除膨胀水箱外)与大气隔离。因此,开式液体管网的动力设备除了克服管网流动阻力外,还要克服进出口高差形成的静水压力。此外,开式液体管网(如排水管网)中流体可能为多相流,其流态比闭式管网复杂;由于使用时间的不确定性,开式液体管网中流量随时间变化较大,而闭式液体管风中流量一般比较稳定。在水力计算方法上,开式液体管网的基本原理和方法与闭式管网没有本质区别。但具体步骤中也有一些差别:(1)动力设备所需克服的阻力项不完全相同,开式管网需考虑高差;(2)管网流量计算方法不同,闭式管网同时使用系数一般取1,而开式管网同时使用系数小于1;(3)水力计算图表不同;(4)对局部阻力的处理方式不同,闭式管网通过局部的阻力系数和动压求局部损失,而开式管网对局部阻力一般不作详细计算,仅根据管网类型采用经验的估计值,局部损失所占比例也小于闭式管网中局部损失所占比例。(5)在并联支路阻力平衡处理上,闭式管网强调阻力平衡校核,而开式管网则对此要求不严,这是开、闭式管网具体型式的不同造成的,开式管网对较大的并联支路也应考虑阻力平衡。3-6分析管内流速取值对管网设计的影响。答:管内流速取值对管网运行的经济性和可靠性都有很重要的影响。管内流速取值大,则平均比摩阻较大,管径可减小,可适当降低管网系统初投资,减少管网安装所占空间;但同时管道内的流速较大,系统的压力损失增加,水泵的动力消耗增加,运行费增加。并且也可能带来运行噪声和调节困难等问题。反之,选用较小的比摩阻值,则管径增大,管网系统初投资较大;但同时管道内的流速较小,系统的压力损失减小,水泵的动力消耗小,运行费低,相应运行噪声和调节问题也容易得到解决。4-1什么是水封?它有什么作用?举出实际管网中应用水封的例子。答:水封是利用一定高度的静水压力来抵抗排水管内气压的变化,防止管内气体进入室内的措施。因此水封的作用主要是抑制排水管内臭气窜入室内,影响室内空气质量。另外,由于水封中静水高度的水压能够抵抗一定的压力,在低压蒸汽管网中有时也可以用水封来代替疏水器,限制低压蒸汽逸出管网,但允许凝结水从水封处排向凝结水回收管。实际管网中应用水封的例子很多,主要集中建筑排水管网,如:洗练盆、大/小便器等各类卫生器具排水接管上安装的存水弯(水封)。此外,空调末端设备(风机盘管、吊顶或组合式空调器等)凝结水排水管处于空气负压侧时,安装的存水弯可防止送风吸入排水管网内的空气。4-2讲述建筑排水管网中液气两相流的水力特征?答:(1)可简化为水气两相流动,属非满管流;(2)系统内水流具有断续非均匀的特点,水量变化大,排水历时短,高峰流量时水量可能充满水管断面,有的时间管内又可能全是空气,此外流速变化也较剧烈,立管和横管水流速相差较大。(3)水流运动时夹带空气一起运动,管内气压波动大;(4)立管和横支管相互影响,立管内水流的运动可能引起横支管内压力波动,反之亦然;(5)水流流态与排水量、管径、管材等因素有关;(6)通水能力与管径、过不断面与管道断面之比、粗糙度等因素相关。4-3提高排水管排水能力的关键在哪里?有哪些技术措施?答:提高排水管排水能力的关键是分析立管内压力变化规律,找出影响立管压力变化的因素。进而想办法稳定管内压力,保证排水畅通。技术措施可以①调整管径;②在管径一定时,调整、改变终限流速和水舌阻力系数。减小终限流速可以通过(1)增加管内壁粗糙度;(2)立管上隔一定距离设乙字弯;(3)利用横支管与立管连接的特殊构造,发生溅水现象;(4)由横支管排出的水流沿切线方向进入立管;(5)对立管内壁作特殊处理,增加水与管内壁的附着力。减小水舌阻力系数,可
本文标题:流体输配管网知识总结与归纳
链接地址:https://www.777doc.com/doc-5366099 .html