您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2011年高考数学总复习系列》——高中数学必修五
《2011年高考数学总复习系列》——高中数学必修五第一章解三角形一、基础知识【理解去记】在本章中约定用A,B,C分别表示△ABC的三个内角,a,b,c分别表示它们所对的各边长,2cbap为半周长。1.正弦定理:CcBbAasinsinsin=2R(R为△ABC外接圆半径)。推论1:△ABC的面积为S△ABC=.sin21sin21sin21BcaAbcCab推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足)sin(sinabaa,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=Cabsin21;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推论4,由正弦定理BbAasinsin,所以)sin()sin(sinsinAaAa,即sinasin(-A)=sin(-a)sinA,等价于21[cos(-A+a)-cos(-A-a)]=21[cos(-a+A)-cos(-a-A)],等价于cos(-A+a)=cos(-a+A),因为0-A+a,-a+A.所以只有-A+a=-a+A,所以a=A,得证。2.余弦定理:a2=b2+c2-2bccosAbcacbA2cos222,下面用余弦定理证明几个常用的结论。(1)斯特瓦特定理【了解】:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2=.22pqqpqcpb(1)【证明】因为c2=AB2=AD2+BD2-2AD·BDcosADB,所以c2=AD2+p2-2AD·pcos.ADB①同理b2=AD2+q2-2AD·qcosADC,②因为ADB+ADC=,所以cosADB+cosADC=0,所以q×①+p×②得qc2+pb2=(p+q)AD2+pq(p+q),即AD2=.22pqqpqcpb注:在(1)式中,若p=q,则为中线长公式.222222acbAD(2)海伦公式:因为412ABCSb2c2sin2A=41b2c2(1-cos2A)=41b2c21614)(1222222cbacb[(b+c)2-a2][a2-(b-c)2]=p(p-a)(p-b)(p-c).这里.2cbap所以S△ABC=).)()((cpbpapp二、基础例题【必会】1.面积法例1(共线关系的张角公式)如图所示,从O点发出的三条射线满足QORPOQ,,另外OP,OQ,OR的长分别为u,w,v,这里α,β,α+β∈(0,),则P,Q,R的共线的充要条件是.)sin(sinsinwvu【证明】P,Q,R共线ORQOPQOPRΔPQRSSSS0sin21uv(α+β)=21uwsinα+21vwsinβvuwsinsin)sin(,得证。2.正弦定理的应用例2如图所示,△ABC内有一点P,使得BPC-BAC=CPA-CBA=APB-ACB。求证:AP·BC=BP·CA=CP·AB。【证明】过点P作PDBC,PEAC,PFAB,垂足分别为D,E,F,则P,D,C,E;P,E,A,F;P,D,B,F三组四点共圆,所以EDF=PDE+PDF=PCA+PBA=BPC-BAC。由题设及BPC+CPA+APB=3600可得BAC+CBA+ACB=1800。所以BPC-BAC=CPA-CBA=APB-ACB=600。所以EDF=600,同理DEF=600,所以△DEF是正三角形。所以DE=EF=DF,由正弦定理,CDsinACB=APsinBAC=BPsinABC,两边同时乘以△ABC的外接圆直径2R,得CP·BA=AP·BC=BP·AC,得证:例3如图所示,△ABC的各边分别与两圆⊙O1,⊙O2相切,直线GF与DE交于P,求证:PABC。【证明】延长PA交GD于M,因为O1GBC,O2DBC,所以只需证.21AEAFAOAOMDGM由正弦定理sin)2sin(,sin)1sin(AEPAAFAP,所以.sinsin2sin1sinAFAE另一方面,2sinsin,1sinsinPMMDPMGM,所以sinsin1sin2sinMDGM,所以AEAFMDGM,所以PA//O1G,即PABC,得证。3.一个常用的代换:在△ABC中,记点A,B,C到内切圆的切线长分别为x,y,z,则a=y+z,b=z+x,c=x+y.例4在△ABC中,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【证明】令a=y+z,b=z+x,c=x+y,则abc=(x+y)(y+z)(z+x)zxyzxy8=8xyz=(b+c-a)(a+c-b)(a+b-c)=a2(b+c-a)+b2(c+a-b)+c2(a+b-c)-2abc.所以a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.4.三角换元。例5设a,b,c∈R+,且abc+a+c=b,试求131212222cbaP的最大值。【解】由题设bacca1,令a=tanα,c=tanγ,b=tanβ,则tanβ=tan(α+γ),P=2sinγsin(2α+γ)+3cos2γ≤31031031sin32,当且仅当α+β=2,sinγ=31,即a=42,2,22cb时,Pmax=.310例6在△ABC中,若a+b+c=1,求证:a2+b2+c2+4abc.21【证明】设a=sin2αcos2β,b=cos2αcos2β,c=sin2β,β2,0.因为a,b,c为三边长,所以c21,c|a-b|,从而4,0,所以sin2β|cos2α·cos2β|.因为1=(a+b+c)2=a2+b2+c2+2(ab+bc+ca),所以a2+b2+c2+4abc=1-2(ab+bc+ca-2abc).又ab+bc+ca-2abc=c(a+b)+ab(1-2c)=sin2βcos2β+sin2αcos2α·cos4β·cos2β=41[1-cos22β+(1-cos22α)cos4βcos2β]=41+41cos2β(cos4β-cos22αcos4β-cos2β)41+41cos2β(cos4β-sin4β-cos2β)=41.所以a2+b2+c2+4abc.21三、趋近高考【必懂】1.(全国10高考)在△ABC中,cos210922ccbA,c=5,求△ABC的内切圆半径.【解析】:∵c=5,1092ccb,∴b=4又cos2ccbAA22cos12∴cosA=cb又cosA=bcacb2222∴cbbcacb2222∴b2+c2-a2=2b2∴a2+b2=c2∴△ABC是以角C为直角的三角形.a=22bc=3∴△ABC的内切圆半径r=21(b+a-c)=1.2.(全国10高考)R是△ABC的外接圆半径,若ab<4R2cosAcosB,则外心位于△ABC的外部.【解析】:∵ab<4R2cosAcosB由正弦定理得a=2RsinA,b=2RsinB∴4R2sinAsinB<4R2cosAcosB∴cosAcosB>sinAsinB∴cosAcosB-sinAsinB>0∴cos(A+B)>0∵cos(A+B)=-cosC∴-cosC>0∴cosC<0∴90°<C<180°∴△ABC是钝角三角形∴三角形的外心位于三角形的外部.3.(全国10高考)半径为R的圆外接于△ABC,且2R(sin2A-sin2C)=(3a-b)sinB.(1)求角C;(2)求△ABC面积的最大值.【解析】:(1)∵RCcBbAa2sinsinsinRbBRcCRaA2sin,)2(sin,)2(sin2222∵2R(sin2A-sin2C)=(3a-b)sinB∴2R[(Ra2)2-(Rc2)2]=(3a-b)·Rb2∴a2-c2=3ab-b2∴232222abcba∴cosC=23,∴C=30°(2)∵S=21absinC=21·2RsinA·2RsinB·sinC=R2sinAsinB=-22R[cos(A+B)-cos(A-B)]=22R[cos(A-B)+cosC]=22R[cos(A-B)+23]当cos(A-B)=1时,S有最大值第二章数列*******毋庸置疑,数列是历年各省市解答题中必出的内容。因此同学要熟练百倍!一、基础知识【理解去记】定义1数列,按顺序给出的一列数,例如1,2,3,…,n,….数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1,a2,a3,…,an或a1,a2,a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。定理1若Sn表示{an}的前n项和,则S1=a1,当n1时,an=Sn-Sn-1.定义2等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a,b,c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d,则a=b-d,c=b+d.定理2*****【必考】等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=dnnnaaann2)1(2)(11;3)an-am=(n-m)d,其中n,m为正整数;4)若n+m=p+q,则an+am=ap+a-q;5)对任意正整数p,q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.定义3等比数列,若对任意的正整数n,都有qaann1,则{an}称为等比数列,q叫做公比。定理3*****【必考】等比数列的性质:1)an=a1qn-1;2)前n项和Sn,当q1时,Sn=qqan1)1(1;当q=1时,Sn=na1;3)如果a,b,c成等比数列,即b2=ac(b0),则b叫做a,c的等比中项;4)若m+n=p+q,则aman=apaq。定义4极限,给定数列{an}和实数A,若对任意的0,存在M,对任意的nM(n∈N),都有|an-A|,则称A为n→+∞时数列{an}的极限,记作.limAann定义5无穷递缩等比数列,若等比数列{an}的公比q满足|q|1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为qa11(由极限的定义可得)。定理4数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。【补充知识点】定理5第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。定理6对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βn-1,其中c1,c2由初始条件x1,x2的值确定;(2)若α=β,则xn=(c1n+c2)αn-1,其中c1,c2的值由x1,x2的值确定。二、基础例题【必会】1.不完全归纳法。这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。例1试给出以下几个数列的
本文标题:2011年高考数学总复习系列》——高中数学必修五
链接地址:https://www.777doc.com/doc-5402440 .html