您好,欢迎访问三七文档
第四章7解:(c):S=(S1,S2,S3,S4,S5,S6,S7)Rb=(S2,S3),(S2,S4),(S3,S1),(S3,S4),(S3,S5),(S3,S6),(S3,S7),(S4,S1),(S5,S3),(S7,S4),(S7,S6)⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=0101000000000000001000000001111100100011000000000A⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=1101001010000011111010001001111110111111110000001M=(A+I)2⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=111001010000001001111101111111000001'M8、根据下图建立系统的可达矩阵VVAAAVVAVVVAVV(A)AV(V)VVVAV(V)VP1P2P3P4P5P6P7P8P9解:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=100000000110000000111100111110100000110111001110001000110000101110001010110000001M9、(2)解:规范方法:1、区域划分SiR(Si)A(Si)C(Si)E(Si)B(Si)11,2,41,311221,2,3,4,5,6,72231,2,3,433342,41,2,3,4,5,6,7452,4,55,6,7562,4,5,6,7,866672,4,5,7,86,77886,7,888因为B(S)={3,6}所以设B中元素Bu=3、Bv=6R(3)={1,2,3,4}、R(6)={2,4,5,6,7,8}R(3)∩R(6)={1,2、3,4}∩{2,4,5,6,7,8}≠φ,故区域不可分解2级位划分SiR(Si)A(Si)C(Si)C(Si)=R(Si)11,2,41,311221,2,3,4,5,6,72231,2,3,433342,41,2,3,4,5,6,74452,4,55,6,75562,4,5,6,7,866772,4,5,7,86,77886,7,88将满足C=R的元素2,8挑出作为第1级将满足C=R的元素4挑出作为第2级将满足C=R的元素1,5挑出作为第3级将满足C=R的元素3,7挑出作为第4级将满足C=R的元素6挑出作为第5级将M按分级排列:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=110101110101011100101101000101010000110100000101000000100000000167351482M提取骨架矩阵如下:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=010000000001001000001000000001000000010000000001000000000000000067351482'A建立其递阶结构模型如下:(1)实用方法:(2)⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=110101110101011100101101000101010000110100000101000000100000000167351482M12487365建立其递阶结构模型同上。第五章9、解:11、某城市服务网点的规模可用SD研究。现给出描述该问题的DYNAMO方程及其变量说明。要求:(1)绘制相应的SD流(程)图(绘图时可不考虑仿真控制变量);(2)说明其中的因果反馈回路及其性质。LS·K=S·J+DT*NS·JKNS=90RNS·KL=SD·K*P·K/(LENGTH-TIME·K)ASD·K=SE-SP·KCSE=2ASP·K=SR·K/P·KASR·K=SX+S·KCSX=60LP·K=P·J+ST*NP·JKNP=100RNP·KL=I*P·KCI=0.02其中:LENGTH为仿真终止时间、TIME为当前仿真时刻,均为仿真控制变量;S为个体服务网点数(个),NS为年新增个体服务网点数(个/年),SD为实际千人均服务网点与期望差(个/千人),SE为期望的千人均网点数,SP为千人均网点数(个/千人),SX为非个体服MTTTTECSTTMLMEMHMCT务网点数(个),SR为该城市实际拥有的服务网点数(个),P为城市人口数(千人),NP为年新增人口数(千人/年),I为人口的年自然增长率。解:(1)因果关系图:流程图:年新增个体服务网点数个体服务网点数千人均服务网点期望差千人均网点数城市人口数年新增人口数实际服务网点数NSSX非个体服务网点数SE期望千人均网点数+-++SSRPSPSDNP(-)SSRSX(60)PNSNPSDSPSE(2)S(90)IP(100)I(0.02)第六章:12、今有一项目建设决策评价问题,已经建立起层次结构和判断矩阵如下图、表所示,试用层次分析法确定五个方案的优先顺序。UC1C2C3C1m1m2m3m4m5C1C2C31351/3131/51/31m1m2m3m4m511/51/725511/268721791/21/61/7141/51/81/91/41C2m1m2m3m4m5C3m1m2m3m4m5m1m2m3m4m511/321/533141/771/21/411/92579191/31/71/21/91m1m2m3m4m51241/91/21/2131/61/31/41/311/91/7969132371/31解:由判断矩阵可得出以下结论:综合效益U经济效益C1环境效益C2社会效益C3方案m1方案C2方案C3方案m2方案m4UC1C2C3WiWi0λmiλmax=3.039C.I.=(Λmax-n)/(n-1)=0.02R.I.=0.52C.R.=0.038<0.1C1C2C31351/3131/51/312.46610.4050.6370.2580.1053.0383.0373.041C1m1m2m3m4m5WiWi0λmiλmax=5.299C.I.=(λmax-n)/(n-1)=0.07R.I.=1.12C.R.=0.06<0.1m1m2m3m4m511/51/725511/268721791/21/61/7141/51/81/91/410.7782.6053.8820.5440.2310.0970.3240.4820.0680.0295.2855.2105.2685.2535.481C2m1m2m3m4m5WiWi0λmiλmax=5.303C.I.=(λmax-n)/(n-1)=0.08R.I.=1.12C.R.=0.07<0.1m1m2m3m4m511/321/533141/771/21/411/92579191/31/71/21/910.8331.6440.4484.9040.3050.1020.2010.0600.6000.0375.1055.4325.0625.6515.267C3m1m2m3m4m5WiWi0λmiλmax=5.204C.I.=(λmax-n)/(n-1)=0.05R.I.=1.12C.R.=0.045<0.1m1m2m3m4m51241/91/21/2131/61/31/41/311/91/7969132371/310.8500.6080.2664.2931.6950.1100.0790.0340.5570.2205.2415.1185.2645.3745.022方案总重要度计算表如下:C1C2C3mj0.6370.2580.105m1m2m3m4m50.0970.3240.4080.0680.0290.1020.2010.0600.6000.0370.1100.0790.0340.5570.2200.1000.2670.3260.2570.051所以m3›m2›m4›m1›m513.现给出经简化的评定科研成果的评价指标体系,其中待评成果假定只有3项,共有12个评价要素,如图所示。学术成就(S2)经济价值(S3)社会贡献(S4)综合结果(S1)技术水平(S5)技术难度(S6)经济效益(S7)社会效益(S8)工作量(S9)0.4要求:(1)、写出12个评价要素之间的邻接矩阵、可达矩阵和缩减矩阵。(2)、若由10位专家组成评审委员会,对成果A的评议表决结果如表所示(其中Nij表示同意A结果在i评审指标下属于第j等级的人数)。请写出隶属度rij的定义式(i=1,2,…,m,j=1,2,…,n)及隶属度矩阵R。一二三四技术水平3421技术难度2341经济效益1234社会效益4420工作量0442(3)、假定通过AHP方法计算出的级间重要度如上图上各括号中的数值所示,请问5个评审指标(S5~S9)权重各为多少?(4)、请根据已有结果计算并确定成果A的等级。解:(1)邻接矩阵:A=等级指标Nij000000000000100000000000100000000000100000000000010000000000010000000000001000000000000100000000000100000000000011111000000011111000000011111000100000000000可达矩阵M=缩减矩阵:M’=(2)解:rij=Nij/NR=(3)解:S5的权重为0.24,S6的权重为0.16,S7的权重为0.4,S8的权重为0.14,S9的权重为0.06。(4)解:(0.24,0.16,0.4,0.14,0.06)=(0.2,0.304,0.284,0.212)10000000000011000000000010100000000010010000000011001000000011000100000010100010000010010001000010010000100011111111111111111111111111111111111111111111111110000000001100000000101000000010010000001100100000110001000010100010001001000100100100001011111111110.30.40.20.10.40.20.30.40.10.50.10.20.30.40.60.40.40.200.700.40.40.20.80.30.40.20.10.90.20.30.40.10.100.10.20.30.40.110.40.40.200.1200.40.40.20.1314、某人购买冰箱前为确定三种冰箱A1、A2、A3的优先顺序,由五个家庭成员应用模糊综合评判法对其进行评价。评价项目(因素)集由价格f1、质量f2、外观f3组成,相应的权重由下表所示判断矩阵求得。同时确定评价尺度分为三级,如价格有低(0.3),中(0.23),高(0.1)。判断结果如下表所示。请计算三种冰箱的优先度并排序。f1f2f3f111/32f2315f31/21/51冰箱种类A1A2A3评价项目f1f2f3f1f2f3f1f2f3评价尺度0.32122432130.22431002320.1100212110解:f1f2f3WiWi0f111/320.8740.230f23152.4660.648f31/21/510.4640.122A
本文标题:系统工程-课后答案
链接地址:https://www.777doc.com/doc-5409547 .html