您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 八年级数学几何经典题【含答案解析】
1PCGFBQADE八年级数学几何经典题【含答案】1、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.2、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.ANFECDMB23、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF..4、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.5、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.AFDECBDEDACBFFEPCBA36、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.7如图,△ABC中,∠C为直角,∠A=30°,分别以AB、AC为边在△ABC的外侧作正△ABE与正△ACD,DE与AB交于F。求证:EF=FD。8如图,正方形ABCD中,E、F分别为AB、BC的中点,EC和DF相交于G,连接AG,求证:AG=AD。FPDECBA49、已知在三角形ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC与F,求证AF=EF,567九年级数学【答案】1.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。2.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=2EGFH+。由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。从而可得PQ=2AIBI+=2AB,从而得证。83.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350从而可得B,G,D在一条直线上,可得△AGB≌△CGB。推出AE=AG=AC=GC,可得△AGC为等边三角形。∠AGB=300,既得∠EAC=300,从而可得∠AEC=750。又∠EFC=∠DFA=450+300=750.可证:CE=CF。4.连接BD作CH⊥DE,可得四边形CGDH是正方形。由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,9又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF。5证明:(1)在AB上取一点M,使AMEC,连接ME.BMBE.45BME°,135AME°.CF是外角平分线,45DCF°,135ECF°.AMEECF.(2)证明:在BA的延长线上取一点N.使ANCE,连接NE.BNBE.45NPCE°.四边形ABCD是正方形,ADBE∥.DAEBEA.NAECEF.ANEECF△≌△(ASA).AEEF.ADFCGEBMADFCGEB图3ADFCGEBN106.过D作AQ⊥AE,AG⊥CF,由ADES=2ABCDS=DFCS,可得:2AEPQ=2AEPQ,由AE=FC。可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。7证明:过D作DG//AB交EA的延长线于G,可得∠DAG=30°∵∠BAD=30°+60°=90°∴∠ADG=90°∵∠DAG=30°=∠CAB,AD=AC∴Rt△AGD≌Rt△ABC∴AG=AB,∴AG=AE11∵DG//AB∴EF//FD8证明:作DA、CE的延长线交于H∵ABCD是正方形,E是AB的中点∴AE=BE,∠AEH=∠BEC∠BEC=∠EAH=90°∴△AEH≌△BEC(ASA)∴AH=BC,AD=AH又∵F是BC的中点∴Rt△DFC≌Rt△CEB∴∠DFC=∠CEB∴∠GCF+∠GFC=∠ECB+∠CEB=90°∴∠CGF=90°∴∠DGH=∠CGF=90°12∴△DGH是Rt△∵AD=AH∴AG=DH21=AD9证明:如图,连接EC,取EC的中点G,AE的中点H,连接DG,HG则:GH=DG所以:角1=∠2,而∠1=∠4,∠2=∠3=∠5所以;∠4=∠5所以:AF=EF.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。阅读过后,希望您提出保贵的意见或建议。阅读和学习是一种非常好的习惯,坚持下去,让我们共同进步。
本文标题:八年级数学几何经典题【含答案解析】
链接地址:https://www.777doc.com/doc-5410732 .html