您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 数据挖掘与识别 > 大数据在智慧城市的10大应用
大数据在智慧城市的10大应用大数据是智慧城市各个领域都能够实现“智慧化”的关键性支撑技术,智慧城市的建设离不开大数据。建设智慧城市,是城市发展的新范式和新战略。大数据将遍布智慧城市的方方面面,从政府决策与服务,到人们衣食住行的生活方式,再到城市的产业布局和规划,直到城市的运营和管理方式,都将在大数据支撑下走向“智慧化”,大数据成为智慧城市的智慧引擎。欧盟利用大数据实现智慧城市的做法给我们很多启示。欧盟对智慧城市的评价分为六个方面:智慧经济、智慧治理、智慧生活、智慧人民、智慧环境、智慧移动性。也就是说智慧城市要促进经济的发展,要改进和帮助更多大众的参与,让老百姓享受智慧的生活,人民得到更好的服务,居住环境更加优化。智慧城市的应用很广泛,我们都知道有物流、交通、电网、工业、农业、建筑、环境、医疗等方面。现在我要讲的是,智慧城市本身会催生大数据,我们可以看到一个企业会涉及到很多环境,管理环境,开放环境,知识环境、服务环境,过去这些环境的关联度不够,那么现在通过数据库使得这些环境能够联合起来,使得企业的效率提高40%-60%,根据赛门铁克的一份最新调研报告,今天全世界所有企业的信息存储总量已达2.2ZB,企业平均10PB,大企业更大点,小企业小点。一般企业都会建立数据库,必须进行数据的集资和数据的挖掘,企业的数据在企业内部已经占有很重要的位置。(1)智慧经济首先大数据在商业上怎么能很好运用,它会分析用户的购物行为,什么商品搭配在一起会卖得更好,还有很多公司通过分析找到最佳客户,淘宝数据魔方则是淘宝平台上的大数据应用方案。那么商家可以了解淘宝平台上的行业宏观情况、自己品牌的市场状况、消费者行为情况等,并可以据此作出经营决策。美国有个投资公司分析了全球3.4亿微博账户留言,判断民众情绪,人们高兴的时候会买股票,而焦虑的时候会抛售股票,依此决定公司股票的买入或卖出,该公司今年第一季度获得7%的收益率。阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和诚信的企业,从而无需担保来放贷,目前已放贷300多亿元,坏帐率仅0.3%,大大低于商业银行。企业通过信息收集很好的掌握企业的运营状况,分析居民与财务有关的记录包括贷款申请、租赁、房地产、购买零售商品、纳税申报、水电费缴付、有线电视缴费、电话缴费、报纸与杂志订阅、机动车档案等,能够得出消费者的个人信用评分,从而推断客户支付意向与支付能力,发现潜在的欺诈。IBM日本公司建立了一个经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算出采购经理人指数PMI预测值。印第安纳大学学者利用Google提供的心情分析工具,对270万用户在2008年3~12月所张贴的970万条留言,挖掘出用户happiness、kindness、alertness、sureness、vitality和calmness等六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。利用大数据分析可实现对合理库存量的管理,华尔街对冲基金依据购物网站顾客评论分析企业产品销售状况,华尔街银行根据求职网站岗位数量推断就业率。(2)智慧治理美国纽约的警察分析交通拥堵与犯罪发生地点的关系,有效改进治安。美国纽约的交通部门从交通违规和事故的统计数据中发现规律,改进了道路设计。利用短信、微博、微信和搜索引擎可以收集热点事件与舆情挖掘。电信运营商拥有大量的手机数据,通过对手机数据的挖掘,不针对个人而是着眼于群体行为,可从中分析:实时动态的流动人口的来源及分布情况;出行和实时交通客流信息及拥塞情况。利用手机用户身份和位置的检测可了解突发性事件的聚集情况。MIT的RealityMining项目,通过对10万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规则性和重复性,进行流行病预警和犯罪预测。(3)环境监测对城市的河流进行采样,通过卫星发布,收集产量的数据,这个数据非常大,通过这个数据分析能够判别城市中有没有污染。(4)智慧医疗无论是药品的研发还是商业模式的开发运用数据分析都能够得到很好的分析,我们医院里有大量的病例,这里有大量的数据,传统的普通病例很难挖掘数据,现在变成电子化有利于更高数据挖掘,数据的挖掘有利于发现医疗知识,由于医疗资源的分配不均,因此远程医疗十分必要,另外,居家监护很重要,谷歌公司与美国疾病控制和预防中心等机构合作,依据网民搜索内容分析全球范围内流感等病疫传播状况,谷歌的判断与疾控中心的判断是一致的。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医院借此可获得足够多的临床效果统计。个性化的医疗同样很重要,我们发现,同样的治疗对一些病人无效,75%癌症病人,70%的老年痴呆者、50%的关节炎病人、43%的糖尿病患者、40%的哮喘病患者,38%的抑郁症病人。因为人体对药品代谢方式的差异取决于个体特定的基因、酶和蛋白质组合,因此基因信息对选择最优治疗非常关键。对人体个性体质的挖掘会做到真正意义上的对症下药,一个人的基因信息大概1GB。(5)智能搜索除此之外,我们还通过网络进行学习,早期的网络学习是通过网站专业人员编制的内容,如今我们希望能够实现更加智能的搜索。随着移动互联网的出现,搜索引擎会变成基于语音的智能搜索;基于位置的搜索;基于个性化搜索。(6)舆情监测大众传播发展的很快,这里包含着大量的数据,例如微博传播具有裂变性、主动性、即时性、便捷性、交互性、草根性,跟进性和临场感,每一个微博用户既是服务器,也是受众。中国的微博比社交网络更热,因为140个字符的微博在英文和中为分别约等于25个和85个英语单词,即中文微博的信息量是Twitter的3~4倍。最近两个月在YouTube上上载的视频超过了ABC、NBC和CBS电视台自1948年以来24/7/365连续播出的内容,而云平台+多屏融合模式已成为智能家居和智能车载等的发展方向。(7)精准营销美国信用营销分析专家张川告诉《环球时报》记者,在大数据分析的应用上,美国政府和大公司领先新兴国家至少20年。15年前,美国的信用卡公司就可以进行数据挖掘实现精准营销:在合适的时间,通过合适渠道,把合适的营销信息投送给每个顾客。(8)犯罪预警随着智能电话和电脑网络的普及,美国政府和大公司把自己的触角伸到个人生活的每个方面。美国个人的一切在线行为数据都被收集储存,再加上已被有关机构掌握的个人信用数据、犯罪记录和人口统计等数据,有关公司和政府机构可以运用数据挖掘的办法,监控和预测个人的行为,并做出相关决策。(9)全球安全监测如美国已具备对全球网络空间的监视控制能力。斯诺登披露的“棱镜”计划,缘于美国政府的“星风”监视计划。2004年,布什政府通过司法程序,将“星风”监视计划分拆成由国家安全局执行的4个监视计划,除“棱镜”外,还包括“主干道”、“码头”和“核子”。其中,“棱镜”用于监视互联网个人信息。“核子”则主要负责截获电话通话者对话内容及关键词。“主干道”和“码头”分别对通信和互联网上数以亿兆计的“元数据”进行存储和分析。“元数据”主要指通话或通信的时间、地点、使用设备、参与者等,不包括电话或邮件等的内容。(10)市场价格监测肯尼思·丘基尔是《经济学家》杂志数据编辑、《大数据:一次将改变我们生活、工作和思考方式的革命》一书的合著者之一,他日前在美国《外交政策》杂志掀起一场有关“大数据时代令隐私保护问题更加突出”的讨论。丘基尔举例说,警方如果要侦破一个城市的加油站是否存在合谋操控价格的“卡特尔行为”,以往要靠线人举报。但今天,可以做大数据分析——分析该市油价变化和加油站分布情况。通过分析,可以发现正常的价格变化规律,如果价格变化持续异常,就可以怀疑存在价格垄断的行为。丘基尔认为,大数据的价值在于存储后的再使用。不过,关键的一个问题是,收集、保存一切信息,与隐私保护政策是有冲突的,“保存一切信息是必要的,但是在这么做之前,我们有必要问自己一个问题,即现行的隐私保护政策是不是妨碍了我们正在迈入的大数据世界”。丘基尔提到,社会有必要就此进行大辩论,以便为大数据时代的隐私保护划定新的边界。结束语美国IT咨询公司Avanade商业情报部副总裁斯蒂夫·帕尔默告诉《环球时报》记者,大数据是指非常“膨胀”的数据集,用典型的数据分析软件和工具难以对其进行捕捉、储存、管理、分享、分析和可视化。大数据有3个特征:一是数据的数量大;二是产生或被吸收的速度和频率快;三是数据的多样性。为从大数据中“挖出金矿”,一家企业或机构必须能够应对大数据上述3个特征。帕尔默说,大数据给人类带来的真正机遇是把许多信息碎片拼起来,为我们的决策服务。附:全球顶尖大数据公司一览企业名称:IBM网址:年5月,IBM正式推出InfoSphere大数据分析平台。InfoSphere大数据分析平台包括BigInsights和Streams,二者互补,Biglnsights基于Hadoop,对大规模的静态数据进行分析,它提供多节点的分布式计算,可以随时增加节点,提升数据处理能力。Streams采用内存计算方式分析实时数据。InfoSphere大数据分析平台还集成了数据仓库、数据库、数据集成、业务流程管理等组件。企业名称:亚马逊网址:对于云计算和大数据,亚马逊绝对具有先见之明,早在2009年就推出了亚马逊弹性MapReduce(AmazonElasticMapReduce),亚马逊对Hadoop的需求和应用可谓了若指掌,无论是中小型企业还是大型组织。弹性MapReduce是一项能够迅速扩展的Web服务,运行在亚马逊弹性计算云(AmazonEC2)和亚马逊简单存储服务(AmazonS3)上。这可是货真价实的云:面对数据密集型任务,比如互联网索引、数据挖掘、日志文件分析、机器学习、金融分析、科学模拟和生物信息学研究,用户需要多大容量,立即就能配置到多大容量。除了数据处理外,用户还可以使用KarmasphereAnalyst的基于服务的版本,KarmasphereAnalyst是一种可视化工作区,用于在亚马逊弹性MapReduce上分析数据。用户还可以提取结果文件,以便在数据库或者微软Excel或Tableau等工具中使用。企业名称:甲骨文网址:甲骨文在近期发布的Oracle大数据机(OracleBigDataAppliance)为许多企业提供了一种处理海量非结构化数据的方法。在2011年10月初召开的OracleOpenWorld2011大会上甲骨文正式推出了Oracle大数据机。对于那些正在寻求以更高效的方法来采集、组织和分析海量非结构化数据的企业而言,该产品具有很大的吸引力。与甲骨文近期推出的其他一体化产品一样,Oracle大数据机集成了硬件、存储和软件,包括ApacheHadoop软件的开源代码分发、新的甲骨文NoSQL数据库和用于统计分析的R语言开源代码分发。该产品被设计为能够与甲骨文Database11g、OracleExadata数据库云服务器,以及针对商业智能应用的新的OracleExalytics商业智能云服务器一起协同工作。企业名称:谷歌网址:谷歌一直是科技行业的领军者,近年来几乎在任何一项互联网科技项目你都能看到谷歌的身影,大数据时代谷歌自然不会错过。何况如果对其拥有的海量数据进行深入挖掘,这对于提升谷歌搜索乃至所有谷歌服务的价值无可估量。BigQuery是Google推出的一项Web服务,用来在云端处理大数据。该服务让开发者可以使用Google的架构来运行SQL语句对超级大的数据库进行操作。BigQuery允许用户上传他们的超大量数据并通过其直接进行交互式分析,从而不必投资建立自己的数据中心。Google曾表示BigQuery引擎可以快速扫描高达70TB未经压缩处理的数据,并且可马上得到分析结果。大数据在云端模型具备很多优势,BigQuery服务无需组织提供或建立数据仓库。而BigQuery在安全
本文标题:大数据在智慧城市的10大应用
链接地址:https://www.777doc.com/doc-5424625 .html