您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 常数项级数的概念和性质
无穷级数无穷级数无穷级数是研究函数的工具表示函数研究性质数值计算数项级数幂级数第九章常数项级数的概念和性质二、常数项级数的概念三、无穷级数的基本性质四、级数收敛的必要条件第一节第九章一、问题的提出一、问题的提出1.计算圆的面积R正六边形的面积正十二边形的面积1a21aa正形的面积n23naaa21naaaA21即n10310003100310331.2二、级数的概念1.级数的定义:nnnuuuuu3211(常数项)无穷级数一般项部分和数列niinnuuuus121级数的部分和,11us,212uus,,3213uuus,21nnuuus2.级数的收敛与发散:当n无限增大时,如果级数1nnu的部分和数列ns有极限s,即ssnnlim则称无穷级数1nnu收敛,这时极限s叫做级数1nnu的和.并写成321uuus如果ns没有极限,则称无穷级数1nnu发散.即常数项级数收敛(发散)nnslim存在(不存在)余项nnssr21nnuu1iinu即ssn误差为nr)0lim(nnr例1讨论等比级数(几何级数)nnnaqaqaqaaq20)0(a的收敛性.解时如果1q12nnaqaqaqasqaqan1,11qaqqan,1时当q0limnnqqasnn1lim,1时当qnnqlimnnslim收敛发散时如果1q,1时当q,1时当qnasn发散aaaa级数变为不存在nnslim发散综上发散时当收敛时当,1,10qqaqnn例2判别无穷级数11232nnn的收敛性.解nnnu1232,3441n已知级数为等比级数,,34q公比,1||q.原级数发散例3判别无穷级数)12()12(1531311nn的收敛性.解)12)(12(1nnun),121121(21nn)12()12(1531311nnsn)121121(21)5131(21)311(21nn)1211(21limlimnsnnn),1211(21n,21.21,和为级数收敛例4.判别级数的敛散性.解:故原级数收敛,其和为三、基本性质性质1如果级数1nnu收敛,则1nnku亦收敛.性质2设两收敛级数1nnus,1nnv,则级数1)(nnnvu收敛,其和为s.结论:级数的每一项同乘一个不为零的常数,敛散性不变.结论:收敛级数可以逐项相加与逐项相减.例5求级数121)1(5nnnn的和.解121)1(5nnnn1)1(5nnn121nn111115)1(5nnnnnnnknkkg11115令),111(5n,5)111(lim5limngnnn,211是等比级数nn,首项是公比21,121qnnnnhlim211.61521)1(51nnnn故,121121性质3.在级数中去掉、加上或改变有限项,不会影响级数的敛散性.证:将级数1nnu的前k项去掉,的部分和为nllknu1knkSS数敛散性相同.当级数收敛时,其和的关系为.kSS类似可证前面加上有限项的情况.极限状况相同,故新旧两级所得新级数机动目录上页下页返回结束性质4.收敛级数加括弧后所成的级数仍收敛于原级数的和.证:设收敛级数,1nnuS若按某一规律加括弧,则新级数的部分和序列为原级数部分和序列),2,1(nSn的一个子序列,S推论:若加括弧后的级数发散,则原级数必发散.因此必有例如机动目录上页下页返回结束注意收敛级数去括弧后所成的级数不一定收敛.)11()11(例如1111收敛发散四、级数收敛的必要条件设收敛级数则必有证:1nnnSSu1limlimlimnnnnnnSSu0SS可见:若级数的一般项不趋于0,则级数必发散.例如,其一般项为不趋于0,因此这个级数发散.机动目录上页下页返回结束注意:0limnnu并非级数收敛的充分条件.例如,调和级数虽然但此级数发散.事实上,假设调和级数收敛于S,则nn2nnnn21312111但nnSS2矛盾!所以假设不真.21机动目录上页下页返回结束五、小结1.由定义,若ssn,则级数收敛;2.当0limnnu,则级数发散;3.按基本性质.常数项级数的基本概念基本审敛法一、正项级数及其审敛法1.定义:,中各项均有如果级数01nnnuu这种级数称为正项级数.nsss212.正项级数收敛的充要条件:定理.有界部分和所成的数列正项级数收敛ns部分和数列为单调增加数列.}{ns且),2,1(nvunn,若1nnv收敛,则1nnu收敛;反之,若1nnu发散,则1nnv发散.证明nnuuus21且1)1(nnv设,nnvu,即部分和数列有界.1收敛nnu均为正项级数,和设11nnnnvu3.比较审敛法nvvv21nns则)()2(nsn设,nnvu且不是有界数列.1发散nnv推论:若1nnu收敛(发散)且))((nnnnvkuNnkuv,则1nnv收敛(发散).定理证毕.比较审敛法的不便:须有参考级数.例1讨论P-级数ppppn14131211的收敛性.)0(p解,1p设,11nnp.级数发散则P,1p设oyx)1(1pxyp1234由图可知nnppxdxn11pppnns131211nnppxdxxdx1211npxdx11)11(1111pnp111p,有界即ns.级数收敛则P发散时当收敛时当级数,1,1ppP重要参考级数:几何级数,P-级数,调和级数.例2证明级数1)1(1nnn是发散的.证明,11)1(1nnn,111nn发散而级数.)1(11nnn发散级数4.比较审敛法的极限形式:设1nnu与1nnv都是正项级数,如果则(1)当时,二级数有相同的敛散性;(2)当时,若收敛,则收敛;(3)当时,若1nnv发散,则1nnu发散;,limlvunnnl00ll1nnv1nnu证明lvunnnlim)1(由,02l对于,N,时当Nn22llvullnn)(232Nnvluvlnnn即由比较审敛法的推论,得证.设1nnu为正项级数,如果0limlnunn(或nnnulim),则级数1nnu发散;如果有1p,使得npnunlim存在,则级数1nnu收敛.5.极限审敛法:例3判定下列级数的敛散性:(1)11sinnn;(2)131nnn;解)1(nnnn3131limnnn11sinlim,1原级数发散.)2(nnn1sinlimnnn311lim,1,311收敛nn故原级数收敛.6.比值审敛法(达朗贝尔D’Alembert判别法):设1nnu是正项级数,如果)(lim1数或nnnuu则1时级数收敛;1时级数发散;1时失效.证明,为有限数时当,0对,N,时当Nn,1nnuu有)(1Nnuunn即,1时当,1时当,1取,1r使,11NmmNuru,12NNruu,1223NNNurruu,,111mNmur收敛而级数,11收敛NnnmmNuu收敛,1取,1r使,时当Nn,1nnnuruu.0limnnu发散比值审敛法的优点:不必找参考级数.两点注意:1.当1时比值审敛法失效;,11发散级数例nn,112收敛级数nn)1(,232)1(2nnnnnvu例,2)1(211收敛级数nnnnnu,))1(2(2)1(211nnnnnauu但,61lim2nna,23lim12nna.limlim1不存在nnnnnauu2.条件是充分的,而非必要.例4判别下列级数的收敛性:(1)1!1nn;(2)110!nnn;(3)12)12(1nnn.解)1(!1)!1(11nnuunn11n),(0n.!11收敛故级数nn),(n)2(!1010)!1(11nnuunnnn101n.10!1发散故级数nnn)3()22()12(2)12(limlim1nnnnuunnnn,1比值审敛法失效,改用比较审敛法,12)12(12nnn,112收敛级数nn.)12(211收敛故级数nnn7.根值审敛法(柯西判别法):设1nnu是正项级数,如果nnnulim)(为数或,则1时级数收敛;,1,1nnn设级数例如nnnnnu1n1)(0n级数收敛.1时级数发散;1时失效.习惯塑造人生从自己的经历谈什么事先做起来•教育就是养成习惯——叶圣陶.•一个人不想做某事,可以找出千万条理由,下决心做一件事情时,有一条理由就足够了。–同学们在日常学习、生活中习惯了给自己不做某事找借口、找托词、找原因。其实就是为了“心安理得”,不妨换个角度想问题,找一条理由来做某件事情是多么容易。
本文标题:常数项级数的概念和性质
链接地址:https://www.777doc.com/doc-5427872 .html