您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 2019年全国各地中考数学压轴题汇编:选择、填空(一)(四川专版)(解析卷)
2019年全国各地中考数学压轴题汇编(四川专版)选择、填空(一)参考答案与试题解析一.选择题(共15小题)1.(2019•成都)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A.c<0B.b2﹣4ac<0C.a﹣b+c<0D.图象的对称轴是直线x=3解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2﹣4ac>0,故B错误;C.当x=﹣1时,y<0,即a﹣b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.2.(2019•自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.解:连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90°,∴AC为圆的直径,∴AC=AB=a,则正方形桌面与翻折成的圆形桌面的面积之比为:=≈,故选:C.3.(2019•攀枝花)在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A.B.C.D.解:由方程组得ax2=﹣a,∵a≠0∴x2=﹣1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选:C.4.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.解:如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选:B.5.(2019•泸州)如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB=AC=5,BC=6,则DE的长是()A.B.C.D.解:连接OA、OE、OB,OB交DE于H,如图,∵等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴OA平分∠BAC,OE⊥BC,OD⊥AB,BE=BD,∵AB=AC,∴AO⊥BC,∴点A、O、E共线,即AE⊥BC,∴BE=CE=3,在Rt△ABE中,AE==4,∵BD=BE=3,∴AD=2,设⊙O的半径为r,则OD=OE=r,AO=4﹣r,在Rt△AOD中,r2+22=(4﹣r)2,解得r=,在Rt△BOE中,OB==,∵BE=BD,OE=OD,∴OB垂直平分DE,∴DH=EH,OB⊥DE,∵HE•OB=OE•BE,∴HE===,∴DE=2EH=.故选:D.6.(2019•攀枝花)如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AC,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中正确结论的个数是()A.1B.2C.3D.4解:如图,连接DF.∵四边形ABC都是正方形,∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=2,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AG=AG,AD=AF,∴Rt△AGD≌Rt△△AGF(HL),∴DG=FG,∠GAF=∠GAD,设GD=GF=x,∴∠EAG=∠EAF+∠GAF=(∠BAF+∠DAF)=45°,故①正确,在Rt△ECG中,∵EG2=EC2+CG2,∴(2+x)2=82+(12﹣x)2,∴x=6,∵CD=BC=BE+EC=12,∴DG=CG=6,∴FG=GC,易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CF∥AG,故③正确,∵S△ECG=×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=×24=,故④错误,故选:B.7.(2019•绵阳)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.4解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<﹣<,∴1<﹣<,当﹣<时,b>﹣3a,∵当x=2时,y=4a+2b+c=0,∴b=﹣2a﹣c,∴﹣2a﹣c>﹣3a,∴2a﹣c>0,故②正确;③当x=时,y的值为a+b+c,给a+b+c乘以4,即可化为a+2b+4c,∵抛物线的对称轴在1<﹣<,∴x=关于对称轴对称点的横坐标在和之间,由图象可知在和2之间y为负值,2和之间y为正值,∴a+2b+4c与0的关系不能确定,故③错误;④∵﹣,∴2a+b<0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>﹣4ab,∵a>0,b<0,∴ab<0,∴,即,故④正确.故选:C.8.(2019•泸州)已知二次函数y=(x﹣a﹣1)(x﹣a+1)﹣3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<﹣1时,y随x的增大而减小,则实数a的取值范围是()A.a<2B.a>﹣1C.﹣1<a≤2D.﹣1≤a<2解:y=(x﹣a﹣1)(x﹣a+1)﹣3a+7=x2﹣2ax+a2﹣3a+6,∵抛物线与x轴没有公共点,∴△=(﹣2a)2﹣4(a2﹣3a+6)<0,解得a<2,∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,而当x<﹣1时,y随x的增大而减小,∴a≥﹣1,∴实数a的取值范围是﹣1≤a<2.故选:D.9.(2019•广元)如图,在正方形ABCD的对角线AC上取一点E.使得∠CDE=15°,连接BE并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=1,有下列结论:①BE=DE;②CE+DE=EF;③S△DEC=﹣;④=2﹣1.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④证明:①∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=∠ACB=∠ACD=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,故①正确;②在EF上取一点G,使EG=EC,连结CG,∵△ABE≌△ADE,∴∠ABE=∠ADE.∴∠CBE=∠CDE,∵BC=CF,∴∠CBE=∠F,∴∠CBE=∠CDE=∠F.∵∠CDE=15°,∴∠CBE=15°,∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=GCF.在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.∵EF=EG+GF,∴EF=CE+ED,故②正确;③过D作DM⊥AC交于M,根据勾股定理求出AC=,由面积公式得:AD×DC=AC×DM,∴DM=,∵∠DCA=45°,∠AED=60°,∴CM=,EM=,∴CE=CM﹣EM=﹣∴S△DEC=CE×DM=﹣,故③正确;④在Rt△DEM中,DE=2ME=,∵△ECG是等边三角形,∴CG=CE=﹣,∵∠DEF=∠EGC=60°,∴DE∥CG,∴△DEH∽△CGH,∴===+1,故④错误;综上,正确的结论有①②③,故选:A.10.(2019•绵阳)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.11.(2019•遂宁)二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=﹣4时,顶点的坐标为(2,﹣8)C.当x=﹣1时,b>﹣5D.当x>3时,y随x的增大而增大解:∵二次函数y=x2﹣ax+b∴对称轴为直线x==2∴a=4,故A选项正确;当b=﹣4时,y=x2﹣4x﹣4=(x﹣2)2﹣8∴顶点的坐标为(2,﹣8),故B选项正确;当x=﹣1时,由图象知此时y<0即1+4+b<0∴b<﹣5,故C选项不正确;∵对称轴为直线x=2且图象开口向上∴当x>3时,y随x的增大而增大,故D选项正确;故选:C.12.(2019•广元)如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A546,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×2395解:∵点A0的坐标是(0,1),∴OA0=1,∵点A1在直线y=x上,∴OA1=2,A0A1=,∴OA2=4,∴OA3=8,∴OA4=16,得出OAn=2n,∴AnAn+1=2n•,∴OA198=2198,A198A199=2198•,∵S1=(4﹣1)•=,∵A2A1∥A200A199,∴△A0A1A2∽△A198A199A200,∴=()2,∴S=2396•=3×2395故选:D.13.(2019•乐山)如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A.B.1C.D.解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3﹣.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=﹣1.故选:A.14.(2019•遂宁)如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④解:∵△PBC是等边三角形,四边形ABCD是正方形,∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD,∴∠CPD=∠CDP=75°,则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°,∴∠DBP=∠DPB=135°,又
本文标题:2019年全国各地中考数学压轴题汇编:选择、填空(一)(四川专版)(解析卷)
链接地址:https://www.777doc.com/doc-5432576 .html