您好,欢迎访问三七文档
数列的求和方法湖北省团风中学一:公式法:(1)等差数列的求和公式:dnnnaaanSnn2)1(2)(11(2)等比数列的求和公式)1(1)1()1(11qqqaqnaSnn.(3)常用公式:222221(1)(21)1236nknnnknL2333331(1)1232nknnknL1.数列{an}的前n项和Sn=2n2-3n+1,则a4+a5+a6+…+a10等于()A.171B.21C.10D.161【答案】D【解析】原式=S10-S3=2×102-3×10-(2×32-3×3)=161.2.数列{an}的通项公式为an=4n-1,令bn=12naaanL,则数列{bn}的前n项和为()A.n2B.n(n+2)C.n(n+1)D.n(2n+1)【答案】B【解析】∵an=4n-1,∴数列{an}是等差数列,且a1=4-1=3,∴bn=12(341)2naaannnnL=2n+1.显然数列{bn}是等差数列,且b1=2+1=3,它的前n项和Sn=b1+b2+…+bn=2)123(nn=n(n+2).二:倒序相加法:1.求和12323nnnnnnSCCCnCL解法一:12323nnnnnnSCCCnCLSn又可写成1211(1)2nnnnnnnSnCnCCCL012nnnnnSnCnCnCL12nnnS解法二:11kknnkCnCQ011111nnnnnSnCnCnCL011111()nnnnnCCCL12nn2.求和:2222sin1sin2sin3sin89ooooL.解:设2222sin1sin2sin3sin89SooooL,又∵2222sin89sin88sin87sin1SooooL,∴289S,892S.三:裂项相消法:把数列通项拆成两项之差、正负相消剩下首尾等项。常见拆项公式:111)1(1nnnn;1111()(2)22nnnn)121121(21)12)(12(1nnnn!)!1(!nnnn1.数列{an}的通项是an=11nn,若前n项和为10,则项数n为()A.11B.99C.120D.121【答案】C【解析】因an=nnnn111,故Sn=(2-1)+(3-2)+…+(nn1)=1n-1,由Sn=10,故n=120.2.Sn=1+3211211+…+1123nL等于()A.1nnB.12nnC.12nnD.122nn【答案】B【解析】an=12112()123(1)1nnnnnL,∴Sn=2[(1-21)+(21-31)+…+(111nn)]=2(1-11n)=12nn.3.求和22224(2)1335(21)(21)nnSnnL解:)121121(211)12)(12(11)12)(12(11)2()12)(12()2(22kkkkkkkkkkak12111111112(1)[(1)()()](1)2335212122121nnnnSaaannnnnnLL4.等差数列{an}是递增数列,前n项和为Sn,且a1,a3,a9成等比数列,S5=a52;(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=121nnaann,求数列{bn}的前99项的和.【解析】(1)设数列{an}公差为d(d>0),∵a1,a3,a9成等比数列,∴a32=a1a9,(a1+2d)2=a1(a1+8d),d2=a1d.①∵d≠0,∴a1=d.∵Sn=a52,∴5a1+245·d=(a1+4d)2.②由①②得:a1=53d=53,∴an=53+(n-1)×53=53n.bn=2212512511(1)339(1)91(1)55nnnnnnnnnn.∴b1+b2+b3+…+b99=925[99+(1-21)+(21-31)+…+(1001991)]=925(100-1001)=41111.四:验证法1.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1),…的前n项和等于()A.2nB.2n-nC.2n+1-n-2D.n·2n【答案】C【解析】令n=1,排除A、D,又令n=2,排除B.选C.2.已知数列{an}满足an=*),,(,)2(2*),,(,NnnnnNnnn为奇数为偶数则{an}2k-1项的和为()A.k2-k+1-121kB.k2+k+1-121kC.2111232kkkkD.2111232kkkk【答案】A【解析】取k=1,S1=32,排除B、C;取k=2,S3=514,排除D。五:错位相减法:,,,.nnnnnnabcabc等差等比求的前n项的和1.数列1,223,324,425,…,nn21的前n项和等于()A.Sn=3-nn21-121nB.Sn=3-nn21-221nC.Sn=3-nn21-221nD.Sn=3-n2n-221n【答案】A【解析】令Sn=1+223+324+…+nn21,①则21Sn=21+432423+…+121nn.②①-②得∴21Sn=1+322121+…+12121nnn=1+11221211)211(21nnn=1212123nnn.∴Sn=3-nn21-121n,故选A.2.求和nS=135212482nnL解:nS=23135212222nnL132212232232121nnnnnS两式相减:21112221(1)22222nnnnSL∴nS21=21+1121221121)211(nnn∴nnnS23233.求a+2a2+3a3+…+nan.【解析】设S=a+2a2+3a3+…+nan.若a=0,则S=0;若a=1,则S=2)1(nn;若a≠0,且a≠1,则S=a+2a2+3a3+…+nan,①aS=a2+2a3+…+(n-1)an+nan+1②①-②得:(1-a)S=a+a2+…+an-nan+1=aaan1)1(-nan+1.∴S=anaaaann1)1()1(12.六:分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。1.已知数列{an}的前n项和Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),那么S15+S22-S31的值为_________________.【答案】-76【解析】S15=1-5+9-13…+57=1+(9-5)+(17-13)+…+(57-53)=29,同理可得:S22=-44,S31=61,∴S15+S22-S31=-76.2.求和:①{111111111nnSLL个②22222111()()()nnnSxxxxxxL③求数列1,3+4,5+6+7,7+8+9+10,…前n项和nS解:①{211111101010(101)9kkkkaLL个2211[(101)(101)(101)][(101010)]99nnnSnLL8110910]9)110(10[911nnnn②242242111(2)(2)(2)nnnSxxxxxxL242242111()()2nnxxxnxxxLL(1)当1x时,nxxxxnxxxxxxSnnnnnn2)1()1)(1(21)1(1)1(22222222222(2)当nSxn4,1时③2[(21)(32)]53(21)2(21)[(21)(1)]222kkkkakkkkkkkL22212535(1)(21)3(1)(12)(12)222622nnnnnnnSaaannLLL)25)(1(61nnn3.求和:5,55,555,5555,…,5(101)9n,…;解:555555555nnS个6447448LL5(999999999)9n个6447448LL235[(101)(101)(101)(101)]9nL235505[10101010](101)9819nnnnL七.其它求和方法(奇偶法求和)1.已知数列nnnnSnaa求],)1([2,。解:nnna)1(22,若2212,2(1232)2(1)mknmknmSSmL则2(1232)(21)2(1)nSmmmnnL2212221,(21)22[2(1)](21)22(21)mnmmmnmSSSammmmmm若则22)1()1(224222nnnnmm)(2)()1(2为正奇数为正偶数nnnnnnSn
本文标题:数列的求和方法
链接地址:https://www.777doc.com/doc-5443114 .html