您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 24.3.2.解直角三角形
24.3.2解直角三角形马鞍山市金瑞中学数学初二备课组本节课学习目标1.运用三角形函数解决实际问题,了解坡度与坡角、方位角、仰角与俯角等测量中有关的概念,学会将其转化为数学问题。自学内容:课本112页~116页1.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和β;(2)坝顶宽AD和斜坡AB的长(精确到0.1m)BADFEC6mαβi=1:3i=1:1.5解:(1)在Rt△AFB中,∠AFB=90°tan11.5AFiBF:33.7在Rt△CDE中,∠CED=90°tan1:3DEiCE18.42.一水库大坝的横断面为梯形ABCD,坝顶宽6.2米,坝高23.5米,斜坡AB的坡度i1=1∶3,斜坡CD的坡度i2=1∶2.5.求:(1)斜坡AB与坝底AD的长度;(精确到0.1米)(2)斜坡CD的坡角α.(精确到1°)3.一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD.(单位米,结果保留根号)指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的北偏东30°点B在点O的南偏西45°(西南方向)30°45°BOA东西北南方位角1.东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离.(精确到1米)图25.3.2解在Rt△ABC中,∵∠CAB=90°-∠DAC=50°,=tan∠CAB,∴BC=AB·tan∠CAB=2000×tan50°≈2384(米).∵=cos50°,∴AC=≈3111(米).ABAC2000cos50cos50AB2如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?解:如图,在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈80×0.91=72.8在Rt△BPC中,∠B=34°PBPCBsin23.130559.08.7234sin8.72sinBPCPB当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.65°34°PBCA3.如图,海岛A四周20海里周围内为暗礁区,一艘货轮由东向西航行,在B处见岛A在北偏西60˚方向,航行24海里到C处,见岛A在北偏西30˚方向,货轮继续向西航行,有无触礁的危险?ABDCNN130˚60˚解过点A作AD⊥BC于D,设AD=x∵∠NBA=60˚,∠N1BA=30˚,∴∠ABC=30˚,∠ACD=60˚,在Rt△ADC中,CD=AD/tan∠ACD=x/tan60˚,在Rt△ADB中,BD=AD/tan30˚=x/tan30˚,∵BD-CD=BC,BC=24∴x/tan30˚-x/tan60˚=24=123√∴x20答:货轮无触礁危险。铅直线水平线视线视线仰角俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.1、如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高.(精确到0.1米)图19.4.41.2022.7=2202、两幢大楼相距110米,从甲楼顶部看乙楼顶部的仰角为26°,如果甲楼高35米,那么乙楼的高为多少米?(精确到1米,tan26°=0.4877,cot26°=20.503)AB甲楼乙楼3510026°C100DE893554544877.0110tantanBCCEBEBACACBCBACACBC解:如图,依题意可知:AD=CE=35,AC=DE=110,∠BAC=26°在Rt△ABC中,3.两座建筑AB及CD,其地面距离AC为50.4米,从AB的顶点B测得CD的顶部D的仰角β=25゜,测得其底部C的俯角a=50゜,求两座建筑物AB及CD的高.(精确到0.1米,tan50°=1.1916,cot50°=0.8391,tan25°=0.46636,cot25°=2.1445)50.4解:依题意得AC=BE=50.4,AB=CEtantanBEECBEEC在Rt△BCE中,tantanBEDEBEDE在Rt△DBE中,4、在山脚C处测得山顶A的仰角为45°。问题如下:1)沿着水平地面向前300米到达D点,在D点测得山顶A的仰角为600,求山高AB。DABC45°60°x300ABC4、在山脚C处测得山顶A的仰角为450。问题如下:变式:沿着坡角为30°的斜坡前进300米到达D点,在D点测得山顶A的仰角为600,求山高AB。30°DEFxx5、在山顶上处D有一铁塔,在塔顶B处测得地面上一点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已知塔高BD=30米,求山高CD。ABCαDβ30解:设:CD=x,根据题意得:∵∠CBA=30o,∠CDA=45o,∴∠CAD=45o,AD=CD=x6.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高?α=30°β=60°120ABCD7如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角α=30`,求飞机A到控制点B的距离.(精确到1米)αABC8.两座建筑AB及CD,其地面距离AC为50.4米,从AB的顶点B测得CD的顶部D的仰角β=300,测得其底部C的俯角a=45,求两座建筑物AB及CD的高.(精确到0.1米)(第2题)利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.课本第112~116页练习当堂检测:
本文标题:24.3.2.解直角三角形
链接地址:https://www.777doc.com/doc-5447393 .html