您好,欢迎访问三七文档
第9章边界层理论(BoundaryLayerTheory)Background:粘性绕流的流动特征与粘性阻力,阻力产生与减阻。L.Prandtl:aGerman(1904),———近代流体力学的奠基人。——FlowOverImmersedBodies边界层与阻力——FlowOverImmersedBodiesWing:streamlinedbodyBluntedbodies90%byswimmer’sshape;10%byfrictionbetweenskinorcostumeandthewater.Newfabrictakesdragoutofswimming9.1边界层的概念——LargeReynoldsNumberFlow低速飞机:L=30m,U0=100m/s,n=1.5×10-5m2/s85102105.130100Re高速船舶:U0=50kn≈25m/s:86106.61014.13025ReRe1流动意味着粘性力相对于惯性力很小,忽略粘性?1.大Re数绕流流场的特征(CharacteristicsofFlowPastanObject)边界层定义:速度梯度很大的薄层。粘性在该薄层内起作用。全流场分成二个流动区域(PlandtlBLModel):d(x)u(x,y)xyU0oUe图9.1.1平壁面绕流的边界层0.99UeUeLUeRe1尾涡区外部势流边界层流δ图9.1.2大Re数绕流流场划分uysuUe外区(yd):几何尺度x~L,y~L;流动尺度u~U0,v~U0。可略去粘性的作用,无粘流。内区(yd):几何尺度x~L,y~d。速度梯度大,考虑粘性。2.边界层厚度估计(StandardBoundaryLayerThickness)名义厚度定义:u=0.99Ue处的y值d(x)。Re大时边界层很薄,约为毫米的量级。d(x)u(x,y)xyU0oUe图9.1.1平壁面绕流的边界层0.99UeUeL1~Re~220202022LLLUULUyuxuuLddndnnLLRe1~dxxRe1~d0Re~UxxxndnxUx0Re边界层内惯性力与粘性力之比属同量级:3.边界层排挤厚度(BoundaryLayerDisplacementThickness)定义:物理意义:用于边界层精确计算时修正物面)(0*1dddyUueUeδ*DCBAD’C’A’δ*d0.99Uexy图9.1.3边界层排挤厚度eeeUdyUdyUudy*000*ddddd(dd0*dyuUUee厚度为d的理想流体进入边界层时的流量损失等于损失了厚度为d*的理想流体的流量d*Ue。它被排向主流,使主流的流线较势流流线外移d*。相当于势流中物体增加了d*(x)厚度。4.边界层动量损失厚度(BoundaryLayerMomentumThickness)定义:物理意义:边界层内损失的动量相当于厚度为q的理想流体动量。Ueδ*DCBAD’C’A’δ*d0.99Uexy图9.1.3边界层排挤厚度)(01dqdyUuUuee(LeefUdyuUuDq20动量定理:几个厚度比较:它们都是流向位置x的函数,随x的增加而增厚。1eUuddq*d(x)u(x,y)xyU0oUe图9.1.1平壁面绕流的边界层0.99UeUeL5.边界层的基本特征(basiccharactersofBL)(1)边界层很薄:(2)边界层内速度梯度很大,粘性不可忽略:(3)边界层内压力沿壁面法向不变,等于外部势流压力:(4)边界层内速度分布具有渐进性:,1Re1~LLd1yueyUu99.0d0ypepp0dyyu9.2边界层微分方程(BoundaryLayerDifferentialequation)不可压缩流体、平面、定常粘性流动NS微分方程组Plandtl边界层方程(1904):0yvxu22221yuxuxpyuvxuun22221yvxvypyvvxvun01022ypyuxpyuvxuuyvxunLLRe1~d220yudxdUUyuvxuuyvxueen0,0vuyeUuy),(ddxdUUdxdpeeeconstUpee221边界层近似9.3平板层流边界层准确解d(x)u(x,y)xyUoU0.99UUL“基洛夫”级导弹巡洋舰AlbatrossflyingaboveseawavesTalkingaboutaflatplate,Why?9.3平板层流边界层准确解(LaminarBLonaFlatPlate——H.Blasius,1908)半无限长平板、不可压缩、定常、层流、不计重力、:d(x)u(x,y)xyUoU0.99UUL0dxdpe边界层方程(nonlinear)三阶常微分方程(nonlinear)0)()(dFf)(dFyFUuUuyvuyyuyuvxuuyvxu,0,0022n1,0,0,002ffffff边界层速度剖面相似性(mapping)Blasius相似性解解法(1908)0)()(dFfd(x)u(x,y)xyUoU0.99UUL•将f()在=0的邻域内展开成幂级数;•由边界条件确定各系数。•后来L.Howarth(1938)给出更精确的数值结果。三阶常微分方程(nonlinear))(dFyFUu1,0,0,002ffffffTable9.1BlasiusAnalyticalsolution(Howarthvalue)表9.1Blasius解(Howarth结果)xUyn)(fUuf)()(fxUyn)(f(Uuf)(fxUyn)(fUuf)()(fxUyn)(f(Uuf)(f0.0000.332064.83.085340.987790.021870.40.026560.132770.331475.03.283290.991550.015910.80.106110.264710.327395.23.481890.994250.011341.20.238950.393780.316595.63.880310.997480.005431.60.420230.516760.296676.04.279640.998980.002402.00.650030.629770.266756.44.679380.999610.000982.40.922300.728990.228096.85.079280.999870.000372.81.230990.811520.184017.25.479250.999960.000133.21.569110.876090.139137.65.879240.999990.000043.61.929540.923330.098098.06.279231.000000.000014.02.305760.955520.064248.46.679231.000000.000004.42.692380.975870.038978.87.079231.000000.00000d(x)u(x,y)xyUoU图9.1.1平壁面绕流的边界层0.99UeUL1.层流边界层的速度分布(velocityprofile)xxUxRe92.492.4ndxxUxRe74.174.1*ndxxUxRe664.0664.0nq名义厚度:排挤厚度:动量损失厚度:)(fUu2.边界层的各种厚度(thickness))()(21nffUxUv01234567890.40.200.81.00.6nUUvUu1Re11~xUxuvnd(x)u(x,y)xyUoU0.99UeUL3.壁面局部摩擦阻力系数(localshearingstress)4.平板的总摩擦阻力与阻力系数xxfUCRe664.0Re)0(22210)0(00fxUUyuynLffLUDCRe328.1221ULUdxDLfn200664.0郭永怀二阶近似解:LLfCRe12.4Re328.1)105Re100(5L)105Re1(5L郭永怀(1909-1968)d(x)u(x,y)xyUoU0.99UeUL5.关于Blasius相似性解的几点说明:正确性(Validation):有限长平板用无限长解近似,Nikuradse(1942)风洞实验验证。LffLUDCRe328.1221应用(Application):•摩擦阻力计算(估算);•校准边界层测速装置的探头;•边界层数值计算方法与程序的校核;•计算湍流边界层时,物体前缘附近层流段解析表达。9.4边界层动量积分方程式(VonKarman,1921)(MomentumIntegralBLEquationforaFlatPlate)航空大师T.vonKármán:美国西岸加州理工学院古根海姆航空实验室(GALIT)——国际空气动力学研究中心。解析解:limitedtolaminar近似解:laminarandturbulent(afastmethodforestimatingfrictiondrag).9.4.1边界层动量积分方程式沿边界层的任一截面x处,取长度为dx的微元(单位宽度)控制体,控制面为Sabcda。——壁面剪应力0与边界层参数d*、q之间的关系Uebau0pddcxdxy图9.4.1边界层动量积分方程xxppeed21xxppeeddd动量定理(x方向):(单位时间)流出控制体的动量-流入的动量=作用于控制面上的合外力xbcabcdFKKKUebau0pddcxdxy图9.4.1边界层动量积分方程xxppeed21xxppeeddd)(02xabdyuKd)(0xabudymd)(0)(0xxcddxudyxudymdd)(0)(022xxcddxdyuxdyuKdd流入:流出:dxudyxUKxebc)(0d外力:deabpF(ddddxdxdppFeecddddxdxdppFeebc2dxFad0动量定理(x方向):xbcabcdFKKKUebau0pddcxdxy图9.4.1边界层动量积分方程xxppeed21xxppeedddVelocityprofilefactor:whereddd00201dxdpdyudxdudydxdUee(dq0*2dxdUUdxUdeee20)2(eeeUdxdUUHdxdqqqd*Hdd0*1dyUuedq01dyUuUuee讨论:1.适用性:层流、湍流边界层。ddd00201dxdpdyudxdudydxdUee(dq0*2dxdUUdxUdeee2.封闭性:1个方程,3个未知数(q、d*、0或q、H、0),不封闭。但它们都和速度分布相关,即00ydydu3.解法:Step1.假定速度分布)(,)(
本文标题:边界层理论1
链接地址:https://www.777doc.com/doc-5456847 .html