您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 2008年高考复习第二轮能力专题弹簧类系列问题 (课件)
2007---2008高考复习你身边的高考专家第二轮能力专题:弹簧类系列问题2008、4专题解说一.命题趋向与考点轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,,引起足够重视.二.知识概要与方法(一)弹簧类问题的分类1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k•△x来求解。专题解说二.知识概要与方法3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。4、弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。专题解说二.知识概要与方法(二)弹簧问题的处理办法1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.专题解说二.知识概要与方法3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(½kx22-½kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式Ep=½kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.专题聚焦例1.(2001年上海)如图(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡:T1cosθ=mg,T1sinθ=T2,T2=mgtanθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=gtanθ,方向在T2反方向你认为这个结果正确吗?请对该解法作出评价并说明理由.专题聚焦(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图(B)所示,其他条件不变,求解的步骤与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.答:(1)结果不正确.因为l2被剪断的瞬间,l1上张力的大小发生了突变,此瞬间T2=mgcosθ,a=gsinθ答:(2)结果正确,因为l2被剪断的瞬间、弹簧l1的长度不能发生突变、T1的大小和方向都不变.专题聚焦例2.A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42kg和0.40kg,弹簧的劲度系数k=100N/m,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5m/s2的加速度竖直向上做匀加速运动(g=10m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248J,求这一过程F对木块做的功.BA解:当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有kx=(mA+mB)g,,x=(mA+mB)g/k①专题聚焦ABNNmAgmBgFKx/对A施加F力,分析A、B受力如图对AF+N-mAg=mAa②对Bkx′-N-mBg=mBa′③可知,当N≠0时,AB有共同加速度a=a/,由②式知欲使A匀加速运动,随N减小F增大.当N=0时,F取得了最大值Fm,即Fm=mA(g+a)=4.41N又当N=0时,A、B开始分离,由③式知此时,弹簧压缩量kx′=mB(a+g),x′=mB(a+g)/k④AB共同速度v2=2a(x-x′)⑤由题知,此过程弹性势能减少了WP=EP=0.248J设F力功WF,对这一过程应用动能定理或功能原理WF+EP-(mA+mB)g(x-x′)=½(mA+mB)v2⑥联立①④⑤⑥,且注意到EP=0.248J,可知WF=9.64×10-2J专题聚焦CθAB例3、(2005年全国理综III卷)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为mA、mB,弹簧的劲度系数为k,C为一固定挡板。系统处一静止状态,现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d,重力加速度为g。解:令x1表示未加F时弹簧的压缩量,由胡克定律和牛顿定律可知A1mgsinθ=kx①令x2表示B刚要离开C时弹簧的伸长量,a表示此时A的加速度,由胡克定律和牛顿定律可知:kx2=mBgsinθ②F-mAgsinθ-kx2=mAa③ABAF-(m+m)gsinθa=m得由题意d=x1+x2⑤由①②⑤式可得AB(m+m)gsinθd=k例4:(2005年全国理综II卷)如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少?已知重力加速度为g。ABm2km1专题聚焦解:开始时,A、B静止,设弹簧压缩量为x1,有kx1=m1g①挂C并释放后,C向下运动,A向上运动,设B刚要离地时弹簧伸长量为x2,有kx2=m2g②B不再上升,表示此时A和C的速度为零,C已降到其最低点。由机械能守恒,与初始状态相比,弹簧性势能的增加量为△E=m3g(x1+x2)-m1g(x1+x2)③C换成D后,当B刚离地时弹簧势能的增量与前一次相同,由能量关系得22311311211211(m+m)v+mv=(m+m)g(x+x)-mg(x+x)-ΔE22故得2131121(2m+m)v=mg(x+x)22112132m(m+m)gv=(2m+m)k专题聚焦专题聚焦例5:在原子物理中,研究核子与核子关联的最有效途经是“双电荷交换反应”。这类反应的前半部分过程和下面力学模型类似。两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。在它们左边有一垂直轨道的固定档板P,右边有一小球C沿轨道以速度v0射向B球,如图所示,C与B发生碰撞并立即结成一个整体D。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。然后,A球与档板P发生碰撞,碰后A、D静止不动,A与P接触而不粘连。过一段时间,突然解除销定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。(1)求弹簧长度刚被锁定后A球的速度。(2)求在A球离开档板P之后的运动过程中,弹簧的最大弹性势能。PmmmABV0C专题聚焦解:整个过程可分为四个阶段来处理.(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒定律,得mv0=2mv1①也可直接用动量守恒一次求出(从接触到相对静止)mv0=3mv2,v2=(1/3)v0.(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒定律,得½(2m)v12=½(3m)v22+EP④当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒定律,得2mv1=3mv2②联立①、②式得v1=(1/3)v0③PmmmABV0C专题聚焦PmmmABV0C撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,弹性势能全部转变成D的动能,设D的速度为v3,有EP=½(2m)v32⑤以后弹簧伸长,A球离开挡板P,并获得速度.设此时的速度为v4,由动量守恒定律,得2mv3=3mv4⑥当弹簧伸到最长时,其弹性势能最大,设此势能为EP/,由能量守恒定律,得½(2m)v32=½(3m)v42+EP/⑦联立③─⑦式得EP/=mv02⑧136专题聚焦例6.(03江苏)⑴如图1,在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等。现突然给左端小球一个向右的速度u0,求弹簧第一次恢复到自然长度时,每个小球的速度。⑵如图2,将N个这样的振子放在该轨道上。最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E0。其余各振子间都有一定的距离。现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰。求所有可能的碰撞都发生后,每个振子弹性势能的最大值。已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度。专题聚焦1234N……左左右右图1图2解:(1)设小球质量为m,以u1、u2分别表示弹簧恢复到自然长度时左右两端小球的速度。由动量守恒和能量守恒定律有mu1+mu2=mu0(以向右为速度正方向),222120111mu+mu=mu222解得u1=u0,,u2=0或u1=0,u2=u0由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端持续减速,使右端小球持续加速,因此应该取:u1=0,u2=u0(2)以v1、v1/分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度,规定向右为速度的正方向。由动量守恒和能量守恒定律有mv1+mv1/=0专题聚焦2,211011mv+mv=E22解得01Ev=m/01Ev=m或01Ev=-m/01Ev=-m在这一过程中,弹簧一直压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取解:/01Ev=m01Ev=-m振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为v1,此后两小球都向左运动。当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大。设此速度为v10,根据动量守恒有2mv10=mv1用E1表示最大弹性势能,由能量守恒有222101011111mv+mv+E=mv222解得E1=¼E0专题训练FFFFF①②③④1.(04全国)如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有A.l2>l1B.l4>l3C.l1>l3D.l2=l4(D)专题训练122.(01江浙)如图所示,在一粗糙水平面上有两个质量分别为m1和m2的木块1和2,中间用一原长为l、劲度系数为K的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是1lmgK2lmgK1212()mmlgKmm12()lmmgKA.B.C.D.(A)专题训练m2m33.如图所示,质量为m1的框架顶部悬挂着质量分别为m2、m3的两物体(m2>m3
本文标题:2008年高考复习第二轮能力专题弹簧类系列问题 (课件)
链接地址:https://www.777doc.com/doc-5475359 .html