您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 实验随机信号通过线性系统和非线性系统后的特性分析
-1-/26实验一随机信号通过线性系统和非线性系统后的特性分析目录目录............................................................-1-1.实验目的......................................................-2-2.实验原理......................................................-2-⑴随机信号的分析方法......................................-2-⑵线性系统................................................-8-⑶非线性系统.............................................-10-⒊实验任务与要求...............................................-11-⑴实验系统框图如图1所示:...............................-11-⑵输入信号:.............................................-11-⑷用matlab或c/c++设计非线性系统.........................-13-⑸用matlab或c/c++设计线性系统...........................-14-⑹完成系统测试...........................................-15-⑺按要求写实验报告.......................................-15-4、实验设计与仿真..............................................-15-(1)输入信号的设计..........................................-15-(2)低通滤波器设计..........................................-19-(3)平方率检波器设计........................................-22-5..实验结果分析................................................-25-6.实验中遇到的问题.............................................-25-7.心得体会.....................................................-25--2-/261.实验目的⑴了解随机信号自身的特性,包括均值(数学期望)、均方值、方差、相关函数、概率密度、频谱及功率谱密度等。⑵研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度有何变化,分析线性系统和非线性系统受随机信号激励后的响应。⑶掌握随机信号的分析方法。2.实验原理⑴随机信号的分析方法在信号系统中,我们可以把信号分成两大类——确知信号和随机信号。确知信号具有一定的变化规律,因而容易分析,而随机信号无确知的变化规律,需要用统计特性进行分析。我们在这里引入了随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。随机过程可分为平稳的和非平稳的、遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化,则随机信号是平稳的。如果一个平稳的随机过程它的任意一个样本都具有相同的统计特性,则随机过程是遍历的。我们下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,我们可以取随机过程的一个样本来描述随机过程的统计特性。随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,它们能够对随机过程作完整的描述。但是由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、概率密度、频谱及功率谱密度等来描述它们。以下算法都是一种估计算法,条件是N要足够大。①随机过程的均值(数学期望):均值E[x(t)]()表示集合平均值或数学期望值。基于随机过程的各态历经-3-/26性,可用时间间隔T内的幅值平均值表示,即:10/)()]([NtNtxtxE均值表达了信号变化的中心趋势,或称之为直流分量。②随机过程的均方值:信号x(t)的均方值E[x2(t)](2),或称为平均功率,其表达式为:NtxtxENt/)()]([(1022均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。③随机信号的方差:信号x(t)的方差定义为:NtxEtxNt/)]]([)([10222称为均方差或标准差。可以证明,222其中:2描述了信号的波动量;2描述了信号的静态量,方差反映了信号绕均值的波动程度。在已知均值和均方值的前提下,方差就很容易求得了。-4-/26○4随机过程的自相关函数:。信号的相关性是指客观事物变化量之间的相依关系。对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。在离散情况下,信号x(n)和y(n)的相关函数定义为:101NtxyN/)t(y)t(x),t(NRτ,t=0,1,2,……N-1。但是,相关函数与x)t(x和y)t(y的强度有关,若x)t(x或y)t(y(x为均值)很小,即使两者的相关程度较强(当时间差τ较小时),则相关函数也不会大,所以相关函数并不能准确地表示关联程度的大小。为了消除起伏值对相关函数的影响,需要对相关函数做归一化处理,所以引入了相关系数的概念。平稳随机过程的相关系数由下式定义:yxyxxyx)(R)(r相关系数又称为规一化相关函数,它确切表征了平稳随机过程在两个不同时刻的起伏值之间的线性关联程度。自然界中的事物变化规律的表现,总有互相关联的现象,不一定是线性相关,也不一定是完全无关,如人的身高与体重,吸烟与寿命的关系等。随机信号的自相关函数表示波形自身不同时刻的相似程度。与波形分析、频谱分析相比,它具有能够在强噪声干扰情况下准确地识别信号周期的特点。下面是几种典型信号的自相关(互相关)函数:正弦波函数的自相关:-5-/26正弦波与噪声的互相关函数:正弦波与方波的互相关函数:正弦波与三角波的互相关函数:-6-/26正弦波与小波信号的互相关函数:正弦波与自身加噪声的互相关函数:正弦波加噪声的自相关函数:-7-/26⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号)(fx,从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为:-j2πft()()xfxtedt信号的时域描述只能反映信号的幅值随时间的变化情况,除只有一个频率分量的简谐波外一般很难明确揭示信号的频率组成和各频率分量的大小。例如,下图是一受噪声干扰的多频率成分周期信号,从信号波形上很难看出其特征,但从信号的功率谱上却可以判断、并识别出信号中的四个周期分量和它们的大小。信号的频谱)(fx代表了信号在不同频率分量处信号成分的大小,它能够提供比时域信号波形更直观,丰富的信息。受噪声干扰的多频率成分周期信号波形和频谱⑥随机过程的功率谱密度:-8-/26随机信号的功率普密度是随机信号的各个样本在单位频带内的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。它只反映随机信号的振幅信息,而没有反映相位信息。随机过程的功率普密度为:]2|)(|lim[)(2TXExGTiT-∞<ω<+∞随机信号的平均功率就是随机信号的均方值。随机信号功率谱密度的性质:★功率谱密度为非负值,即功率谱密度大与等于0。★功率谱密度是ω的实函数。★对于实随机信号来说,功率谱密度是ω的偶函数,即Sx(ω)=Sx(-ω)。★功率谱密度可积。功率谱密度曲线下的总面积(即随机信号的全部功率)等于随机信号的均方值。★随机信号的功率谱与它的自相关函数构成一对傅里叶变换对。⑵线性系统线性系统的输入x(t)和输出y(t)之间的关系可以用常系数线性微分方程来描述:any(n)(t)+an-1y(n-1)(t)+…+a1y(1)(t)+a0y(0)(t)=bmx(m)(t)+bm-1x(m-1)(t)+b1x(1)(t)+b0x(0)(t)其中a0,a1,…,an和b0,b1,…,bm均为常数,则称该系统为线性定常系统,线性定常系统有下面的一些重要性质:☆叠加性系统对各输入之和的输出等于各单个输入所得的输出之和,即。。若x1(t)→y1(t),x2(t)→y2(t)。。-9-/26。。则x1(t)±x2(t)→y1(t)±y2(t)☆比例性常数倍输入所得的输出等于原输入所得输出的常数倍,即。。若x(t)→y(t)。。。。则kx(t)→ky(t)☆微分性系统对原输入信号的微分等于原输出信号的微分,即。。若x(t)→y(t)。。。。则x’(t)→y’(t)☆积分性当初始条件为零时,系统对原输入信号的积分等于原输出信号的积分,即。。若x(t)→y(t)。。。。则∫x(t)dt→∫y(t)dt☆频率保持性若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号,即。。若x(t)=Acos(ωt+φx)。。。。则y(t)=Bcos(ωt+φy)。。大家知道,线性动态系统分析的中心问题是给定一个输入信号求输出响应。在确定信号输入的情况下,输出响应都有一个明确的表达式。而对于随机信号而言,要想得到输出响应的确定表达是可能的。然而,一个随机信号可以方便的通过其均值方差、相关函数、频谱及功率谱密度等特性来加以描述。我们在这里研究的问题是如何根据线性系统输入随机信号的统计特性及线性系统的特性,确定线性系统的统计特性。当输入离散信号为双侧平稳随机信号时,信号经过线性系统后的统计特性:输出过程的均值为:)()()()()(0tmthdtmhtmxxy其中ym是信号经线性系统后的均值,xm是输入信号的均值。-10-/26输出过程的自相关函数为)(*)()(*)(*)()(mhmRmhmhmRmRxyxy线性系统输出的自相关是输入的自相关同系统冲击响应的自相关的卷积。输出过程的互相关函数为)(*)()(mRmhmRxxy输出信号的均方值(平均功率)为;)()()()]([002jkRjhkhnYEkjx输出的均值为常数,输出自相关函数只是m的函数。输出信号的功率谱密度:频域分析:)(|)(|)(2xySHS⑶非线性系统在一般电子设备中,除了线性电路之外,通常还包括一些非线性电路,例如检波器、限幅器、鉴频器等。非线性电路具有下述特点:①叠加原理已不适用,当信号与噪声共同通过非线性电路时,不能像线性电路那样将它们分开研究。②会发生频谱变换,产生出输入电路中不含有的新频谱分量,例如输入信号的各次谐波。与线性系统相同,非线性动态系统分析的中心问题也是给定一个输入信号求输出响应。一个随机信号可以方便的通过其均值、方差、相关函数、频谱及功率谱密度等特性来加以描述。我们在这里研究的问题是如何根据非线性系统输入随机信号的统计特性及线性系统的特性,确定非线性系统的统计特性。-11-/26⒊实验任务与要求⑴实验系统框图如图1所示:图1线性系统测试、非线性系统测试⑵输入信号:线性系统:输入信号)(sinsinsin)(321tnttttx,其中:1、2、3为1KHz、2KHz、3KHz,幅值为1v,n(t)为高斯白噪声,如图2所示:020040060080010001200-6-4-20246输入信号-12-/260200040
本文标题:实验随机信号通过线性系统和非线性系统后的特性分析
链接地址:https://www.777doc.com/doc-5494402 .html