您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 高等岩石力学读书报告
高等岩石力学读书报告学院:国土资源工程学院专业:地质工程姓名:曾敏学号:2006201071高等岩石力学读书报告岩石力学是研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。又称岩体力学,它是力学的一个分支。研究的目的在于解决水利、土木工程等建设中的岩石工程问题。它是近代发展起来的一门新兴学科,是一门应用性的基础学科。对于岩石力学的定义有很多种说法,这里推荐一种较广义、较严格的定义:“岩石力学是研究岩石的力学性状的一门理论科学,同时也是应用科学;它是力学的一个分支,研究岩石对于各种物理环境的力场所产生的效应。”这个定义既概括了岩石力学所研究的破碎与稳定两个主要方面的内容,也概括了岩石受到一切力场作用所引起的各种力学效应。岩石力学的理论基础相当广泛,涉及固体力学、流体力学、计算数学、弹塑性理论、工程地质和地球物理学等学科,并与这些学科相互渗透。岩石力学主要理论基础及与其他学科的结合岩石力学是一门应用性的基础学科。它的理论基础相当广泛,涉及到很多基础及应用学科。岩石力学的力学分支基础1、固体力学固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。在采矿工程中用到的固体力学主要有:材料力学,结构力学,弹、塑性力学,复合材料力学,断裂力学和损伤力学。如把采场上覆岩层看作是梁或板结构用的就是结构力学理论;采用弹性力学研究巷道周围的应力分布。2、流体力学流体力学主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动规律。流体力学中研究得最多的流体是水和空气。对于地下采矿工程来说,其研究对象就是地下水与瓦斯等矿井气体。3、爆炸力学爆炸力学主要研究爆炸的发生和发展规律,以及爆炸的力学效应的利用和防护。它从力学角度研究爆炸能量突然释放或急剧转化的过程,以及由此产生的强冲击波(又称激波)、高速流动、大变形和破坏、抛掷等效应。同时爆炸力学是流体力学、固体力学和物理学、化学之间的一门交叉学科。地下开采中的巷道掘进,露天开采中的采剥都要进行爆破。4、计算力学计算力学是综合力学、计算数学和计算机科学的知识,以计算机为工具研究解决力学问题的理论、方法,以及编制软件的学科。从20世纪50年代以来,它在力学的各分支学科和边缘学科中得到了很大的发展,无论是在科学研究还是工程技术中均得到了广泛应用,现在它已成为力学除理论研究和实验研究之外的第3种手段。常见的计算力学方法并已广泛用到数值模拟计算中的有:材料非线性有限元法、几何非线性有限元法、热传导和热应力有限元法、弹性动力学有限元法、边界元法、离散元法、无网格法、有限差分法、非连续变形分析等。以计算力学为基础的数值模拟方法在采矿工程中的研究应用也正广泛地开展起来。岩石力学与其他学科的结合上述力学分支构成了岩石力学的基础,同时,岩石力学的发展也离不开其他学科的支持。在岩石力学的发展过程中,岩石力学十分关注其他学科的最新进展,并不断地吸收、借鉴它们的方法和手段,极大地丰富了岩石力学自身的研究应用手段。岩石工程中所研究的岩块和岩体,作为一种地质体,其形成受地质作用支配,地质系统与工程岩体之间具有相互依存和相互作用关系。因此,对岩石的成岩和蜕变过程,构造应力和构造变形,岩石所赋存的构造部位及地质环境等因素的研究构成了岩石力学与工程学科的重要基础。岩石工程的状态参数大多是随机变量,甚至可能是时间或空间的随机过程。由于这种状态参数的随机分布特性,其破坏模式及破坏过程也具有随机性。因此,对岩石工程进行参数的概率统计、破坏的随机过程分析和系统的可靠度分析就显得尤为重要了。统计学研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。现有机器学习方法共同的重要理论基础是统计学,传统统计学研究的是样本数目趋于无穷大时的渐进理论,现有学习方法也多是基于此假设。与传统统计学相比,统计学习理论(StatisticalLearningTheory或SLM)是一种专门研究小样本情况下机器学习规律的理论。V.Vapnik等人从上世纪六七十年代开始致力于此方面研究。目前该理论又成为研究热点,我国冯夏庭、赵洪波等人已将其应用到了岩石工程中。近年来,随着现代数学和计算机技术的发展,人工智能、遗传进化算法、数据挖掘、灰色理论、非线性力学以及系统科学等新兴学科的兴起,为人们提供了全新的思维方式,这些都为突破岩石力学的确定性研究方法提供了强有力的理论基础。虚拟现实(VirtualReality)是一种综合计算机图形技术、多媒体技术、传感器技术、并行实时计算技术、人工智能、仿真技术等多种学科而发展起来的计算机领域的最新技术。它运用计算机表达现实世界的各种过程,通过它可以运用数学力学方法如数值模拟呈现开挖过程,在施工过程中描述尚未进行的工程,结合工程实践预测岩体变形及稳定。岩石力学的分支岩石力学以上述这些力学分支为基础并跟其他学科融合,逐步发展出以下分支:岩石工程地质力学;岩体结构力学;统计岩体力学;岩石流变力学;分形岩石力学;岩石水力学;强动载作用下的岩石动力学;非线性岩石力学;卸荷岩石力学;软岩工程力学;岩石力学智能分析方法。这些分支目前在采矿工程各个领域中都有具体应用。岩石力学的研究内容岩石力学的研究内容分为基础理论和工程应用两个方面。但是这些方面只是主要方面,随着建设的发展,还会有新的问题不断的提出。2.1基础理论1、岩石应力,包括岩体内应力的来源、初始应力(构造应力、自重应力等)、二次应力、附加应力等。初始应力由现场量测决定,常用钻孔应力解除法和水压致裂法,有时也用应力恢复法。二次应力和附加应力的计算常用固体力学经典公式,复杂情况下采用数值方法。2、岩石强度,包括抗压、抗拉、抗剪(断)强度及岩石破坏、断裂的机理和强度准则。室内用压力机、直剪仪、扭转仪及三轴仪,现场做直剪试验和三轴试验,以确定强度参数(凝聚力和内摩擦角)。强度准则大多采用库伦-纳维准则。这个准则假定对破坏面起作用的正应力会增加岩石的抗剪强度,其增加量与正(压)应力的大小成正比。其次采用莫尔准则,也可采用格里菲思准则和修正的格里菲思准则。3、岩石变形,包括单向和三向条件下的变形曲线特性、弹性和塑性变形、流变(应力-应变-时间关系)和扩容。岩石流变主要包括蠕变和松弛。在应力不等时岩石的变形随时间不断增长的现象称为蠕变。在应变不变时岩石中的应力随时间减少的现象称为松弛。岩石扩容是指在偏应力作用下,当应力达到某一定值时岩石的体积随偏应力的增大而增大的现象。研究岩石变形在室内常用单轴或三轴压缩方法、流变试验和动力试验等,多数试验往往结合强度研究进行。为了测定岩石应力达到峰值后的应力与应变关系,必须应用伺服控制刚性压力机。野外试验有承压板法、水压法、钻孔膨胀计法和动力法等。根据室内外试验可获得应力与应变关系和应力-应变-时间关系以及相应的变形参数,如弹性模量、变形模量、泊松比、弹性抗力系数、流变常数等。4、岩石渗流,包括渗透性、渗流理论、渗流应力状态和渗流控制等。对大多数岩石假定岩石中的水流为层流,流速与水力梯度呈线性关系,遵循达西定律。岩石渗透性用渗透系数表示,该系数在室内用渗透仪测定,在野外用压水和抽水试验测定。渗流理论借流体力学原理进行研究。稳定渗流满足拉普拉斯方程。多数岩石内的孔隙(裂隙)水压力可用K.泰尔扎吉有效应力定律计算。为了减小大坝底面渗透压力、提高大坝的稳定性,应当采取渗流控制措施,如抽水、排水、设置灌浆帷幕以延长渗流途径等。5、岩石动力性状,研究爆炸、爆破、地震、冲击等动力作用下岩石的力学特性、应力波在岩石内的传播规律、地面振动与损害等。动力特性在室内用动三轴试验研究,野外用地球物理性、爆炸冲击波试验等技术进行研究,波的传播规律借固体力学的理论进行研究。2.2工程应用方面主要研究五个方面1、地上工程建筑物的岩石地基,例如研究高坝、高层建筑、核电站以及输电线路塔等地基的稳定、变形及处理的问题;2、地表挖掘的岩石工程问题,如水库边坡、高坝岸坡、渠道、运河、路堑、露天开采坑等天然和人工边坡的稳定、变形及加固问题;3、地下洞室,如研究地下电站、水工隧洞、交通隧道、采矿巷道、战备地道、石油产品库等的围岩的稳定和变形问题,地下开挖施工以及围岩的加固(如固结灌浆、锚喷、预应力锚固等)问题;4、岩石破碎,如将岩石破碎成各种所要求的规格,以作为有关建筑材料(建筑物面石、土坝护石、堆石坝和防波堤石料、混凝土骨料等);5、岩石爆破,如用定向爆破筑坝,巷道掘进和采矿等。此外,岩石力学还应用于某些地质问题的研究,如分析因开采地下矿体和液体而地表下陷、解释地球构造理论、预估地震和控制地震等。岩石力学的研究方法岩石力学是一门边缘学科,为了能用力学观点对自然存在的岩体进行性质测定和理论计算,为工程建设服务,岩石力学的研究方法包括科学实验、理论分析及工程验证等几个环节,三者是紧密结合并且相互促进的。岩石力学是一门应用性很强的工程学科,因此在应用岩石力学知识解决具体工程问题的时候,必须与工程设计与施工保持密切联系、相互配合。按学科的领域区分岩石力学的研究方法可以有以下四个方面:地质研究方法着重于研究与岩石的力学性质和力学行为有关的岩体。如:岩层特征的研究。如软弱成份、可溶盐类、含水蚀变矿物、不抗风化以及原生结构。岩体结构研究。软弱结构面、软弱面的起伏度结构面的充填物等。环境因素研究。如地应力成因和展布地下水性态,水平地质条件等。物理测试方法结构探测。采用地球物理方法和技术来探查各种结构面的力学行为。环境物理量测。如地应力机制,渗透水系量测等。岩石物理、力学性质测试。如室内岩块的物理性质、力学性质,原位岩体的力学性质,钻孔测试,变形监测以及位移反分析确定岩体和岩性参数等。力学分析方法力学模型研究。包括弹塑性模型、流变模型、断裂模型、损伤力学模型、渗透网络模型、拓扑模型等。数值分析方法。如有限元法、边界元法、离散元法、系统分析法和设计施工风险决策的人工智能专家系统等。模糊聚类和概率分析。如随机分析、灵敏度分析、趁势分析、时间序列分析和灰箱问题等。模抑分析。如光弹应力分析,相似材料模型实验、离心模型实验等。整体综合分析方法就整个工程进行多种方法并以系统工程为基线的综合分析。岩石力学在采矿工程中的发展趋势岩石力学的发生与发展与其它学科一样,是与人类的生产活动紧密相关的。岩石力学已经广泛应用到了采矿工程中的各个领域,而且其研究理论正不断创新,研究手段也日新月异。随着我国矿产资源的持续开发,在采矿工程中将会遇到条件更复杂、难度更大的岩石力学问题,因此,岩石力学与工程学科的理论水平和工程能力都有待进一步提高。地下开采现代技术理论与矿山岩石力学和其他学科相互交叉及渗透是这一学科领域带全局性的发展趋势之一。岩石力学由研究单一的固体不连续材料向多场耦合和多相运动研究发展。灾害与公共安全的力学问题是目前需要特别给予考虑资助的重大科学问题。由此,岩石力学在采矿工程中应用的发展趋势可以归纳如下:1、多学科相互交叉和多种手段的综合集成岩体工程的不确定性导致来自任何一种来源的知识都难以支持可靠的决策。因此,综合地质、物探、测量、力学试验、数学、物理和化学分析等学科知识和手段是目前解决该问题的最好途径。2、多场耦合、多相运动和多尺度的综合集成随着矿井开采深度的日益加大,采矿工程中的岩石力学问题出现了热、流、固、化多场并存以及固、气、水、微粒多相复合运动的状况。因此,对多场耦合以及多相运动的研究还有待深入,同时,随着采矿工程规模的日益扩大,力学上均一体的尺寸效应进化为大尺度和多尺度问题,因此不可避免地面临多尺度模型及其耦合,即:宏观一细观一微观的研究及其相互耦合。3、灾害的非线性动力过程的预测和防治研究目前采矿工程中还有如下主要灾害急需深入、系统地研究:冲击矿压;煤与瓦斯突出;煤层顶、底板水防治;大型矿山的坍塌;采动引起的巨型坡体失稳和山体滑坡。过去,工程中遇到的岩石工程问题,多凭经验解决,但工程实践证明
本文标题:高等岩石力学读书报告
链接地址:https://www.777doc.com/doc-5527441 .html