您好,欢迎访问三七文档
第3章信息加密技术本章要点传统工艺加密方法DES加密算法和RSA加密算法计算机网络的加密技术几个简单加密软件的使用3.1概述信息加密技术是保障信息安全的核心技术。信息安全的技术主要包括监控、扫描、检测、加密、认证、防攻击、防病毒以及审计等几个方面,其中加密技术是信息安全的核心技术,已经渗透到大部分安全产品之中,并正向芯片化方向发展。通过数据加密技术可以在一定程度上提高数据传输的安全性,保证传输数据的完整性。一个数据加密系统包括加密算法、明文、密文以及密钥,密钥控制加密和解密过程,一个加密系统的全部安全性是基于密钥的,而不是基于算法,所以加密系统的密钥管理是一个非常重要的问题。数据加密过程就是通过加密系统把原始的数字数据(明文),按照加密算法变换成与明文完全不同的数字数据(密文)的过程。下面先学习一些名词概念。加密系统:由算法以及所有可能的明文、密文和密钥组成。密码算法:密码算法也叫密码(cipher),适用于加密和解密的数学函数(通常情况下,有两个相关的函数,一个用于加密,一个用于解密)。明文(plaintext):未被加密的消息。密文(ciphertext):被加密的消息。加密(encrypt)、解密(decrypt):用某种方法伪装数据以隐藏它原貌的过程称为加密;相反的过程叫解密。密钥(key):密钥就是参与加密及解密算法的关键数据。没有它明文不能变成密文,密文不能变成明文。画图来解释一下。加密密钥解密密钥||明文→“加密”→密文→“解密”→明文有时候,加密密钥=解密密钥(对称加密时)。假设E为加密算法,D为解密算法,P为明文则数据的加密解密数学表达式为:P=D(KD,E(KE,P))。计算机网络安全技术·42··42·3.1.1数据加密技术数据加密技术主要分为数据传输加密和数据存储加密。数据传输加密技术主要是对传输中的数据流进行加密,常用的有链路加密、节点加密和端到端加密三种方式。(1)链路加密是传输数据仅在物理层上的数据链路层进行加密,不考虑信源和信宿,它用于保护通信节点间的数据。接收方是传送路径上的各台节点机,数据在每台节点机内都要被解密和再加密,依次进行,直至到达目的地。(2)与链路加密类似的节点加密方法是在节点处采用一个与节点机相连的密码装置,密文在该装置中被解密并被重新加密,明文不通过节点机,避免了链路加密节点处易受攻击的缺点。(3)端到端加密是为数据从一端到另一端提供的加密方式。数据在发送端被加密,在接收端解密,中间节点处不以明文的形式出现。端到端加密是在应用层完成的。在端到端加密中,数据传输单位中除报头外的报文均以密文的形式贯穿于全部传输过程,只是在发送端和接收端才有加、解密设备,而在中间任何节点报文均不解密。因此,不需要有密码设备,同链路加密相比,可减少密码设备的数量。另一方面,数据传输单位由报头和报文组成的,报文为要传送的数据集合,报头为路由选择信息等(因为端到端传输中要涉及到路由选择)。在链路加密时,报文和报头两者均须加密。而在端到端加密时,由于通路上的每一个中间节点虽不对报文解密,但为将报文传送到目的地,必须检查路由选择信息。因此,只能加密报文,而不能对报头加密。这样就容易被某些通信分析发觉,而从中获取某些敏感信息。链路加密对用户来说比较容易,使用的密钥较少,而端到端加密比较灵活,对用户可见。在对链路加密中各节点安全状况不放心的情况下也可使用端到端加密方式。3.1.2数据加密算法数据加密算法有很多种,密码算法标准化是信息化社会发展的必然趋势,是世界各国保密通信领域的一个重要课题。按照发展进程来分,经历了古典密码、对称密钥密码和公开密钥密码阶段。古典密码算法有替代加密、置换加密;对称加密算法包括DES和AES;非对称加密算法包括RSA、背包密码、McEliece密码、Rabin、椭圆曲线、EIGamalD_H等。目前在数据通信中使用最普遍的算法有DES算法、RSA算法和PGP算法等。1.DES加密算法DES是一种对二元数据进行加密的算法,数据分组长度为64位,密文分组长度也是64位,使用的密钥为64位,有效密钥长度为56位,有8位用于奇偶校验,解密时的过程和加密时相似,但密钥的顺序正好相反。DES算法的弱点是不能提供足够的安全性,因为其密钥容量只有56位。由于这个原因,后来又提出了三重DES或3DES系统,使用三个不同的密钥对数据块进行三次(或两次)加密,该方法比进行三次普通加密快。其强度大约和112位的密钥强度相当。2.RSA算法RSA算法既能用于数据加密,也能用于数字签名。RSA的理论依据为:寻找两个大素数比较简单,而将它们的乘积分解开的过程则异常困难。在RSA算法中,包含两个密钥,第3章信息加密技术·43··43·加密密钥PK和解密密钥SK,加密密钥是公开的,其加密与解密方程为:PK={e,n},SK={d,n}。其中n=p×q,p∈[0,n-1],p和q均为很大的素数,这两个素数是保密的。RSA算法的优点是密钥空间大,缺点是加密速度慢,如果RSA和DES结合使用,则正好弥补RSA的缺点。即DES用于明文加密,RSA用于DES密钥的加密。由于DES加密速度快,适合加密较长的报文;而RSA可解决DES密钥分配的问题。3.1.3数据加密技术的发展1.密码专用芯片集成密码技术是信息安全的核心技术,无处不在,目前已经渗透到大部分安全产品之中,正向芯片化方向发展。在芯片设计制造方面,目前微电子工艺已经发展到很高水平,芯片设计的水平也很高。我国在密码专用芯片领域的研究起步落后于国外,近年来我国集成电路产业技术的创新和自我开发能力得到了加强,微电子工业得到了发展,从而推动了密码专用芯片的发展。加快密码专用芯片的研制将会推动我国信息安全系统的完善。2.量子加密技术的研究量子技术在密码学上的应用分为两类:一类是利用量子计算机对传统密码体制的分析;另一类是利用单光子的测不准原理在光纤一级实现密钥管理和信息加密,即量子密码学。量子计算机相当于一种传统意义上的超大规模并行计算系统,利用量子计算机可以在几秒钟内分解RSA129的公钥。根据互联网的发展,全光纤网络将是今后网络连接的发展方向,利用量子技术可以实现传统的密码体制,在光纤一级完成密钥交换和信息加密,其安全性是建立在Heisenberg的测不准原理上的,如果攻击者企图接收并检测信息发送方的信息(偏振),则将造成量子状态的改变,这种改变对攻击者而言是不可恢复的,而对收发方则可很容易地检测出信息是否受到攻击。目前量子加密技术仍然处于研究阶段(在我国处于领先地位),其量子密钥分配QKD在光纤上的有效距离还达不到远距离光纤通信的要求。3.2数据加密标准DES与IDEA3.2.1数据加密标准DES思想1973年,美国国家标准局(NBS)在认识到建立数据保护标准既明显又急迫的情况下,开始征集联邦数据加密标准的方案。1975年3月17日,NBS公布了IBM公司提供的密码算法,以标准建议的形式在全国范围内征求意见。经过两年多的公开讨论之后,1977年7月15日,NBS宣布接受这个建议,作为联邦信息处理标准46号数据加密标准(DataEncryptionStandard),即DES正式颁布,供商业界和非国防性政府部门使用。根据密钥类型不同将现代密码技术分为两类:一类是对称加密(秘密钥匙加密)系统,另一类是公开密钥加密(非对称加密)系统。目前最著名的对称加密算法有数据加密标准DES和欧洲数据加密标准IDEA等。随后DES成为全世界使用最广泛的加密标准。对称式密码是指收发双方使用相同密钥的密码,而且通信双方都必须获得这把钥匙,计算机网络安全技术·44··44·并保持钥匙的秘密。传统的密码都属于对称式密码。非对称式密码是指收发双方使用不同密钥的密码,现代密码中的公共密钥密码就属于非对称式密码。对称加密算法的主要优点是加密和解密速度快,加密强度高,且算法公开,但其最大的缺点是实现密钥的秘密分发困难,在有大量用户的情况下密钥管理复杂,而且无法完成身份认证等功能,不便于应用在网络开放的环境中。加密与解密的密钥和流程是完全相同的,区别仅仅是加密与解密使用的子密钥序列的施加顺序刚好相反。DES密码体制的安全性应该不依赖于算法的保密,其安全性仅以加密密钥的保密为基础。但是,经过二十多年的使用,已经发现DES很多不足之处,对DES的破解方法也日趋有效。AES(高级加密标准)将会替代DES成为新一代加密标准。非对称加密算法的优点是能适应网络的开放性要求,密钥管理简单,并且可方便地实现数字签名和身份认证等功能,是目前电子商务等技术的核心基础。其缺点是算法复杂,加密数据的速度和效率较低。因此在实际应用中,通常将对称加密算法和非对称加密算法结合使用,利用DES或者IDEA等对称加密算法来进行大容量数据的加密,而采用RSA等非对称加密算法来传递对称加密算法所使用的密钥,通过这种方法可以有效地提高加密的效率并能简化对密钥的管理。对称密码系统的安全性依赖于以下两个因素。第一,加密算法必须是足够强的,仅仅基于密文本身去解密信息在实践上是不可能的;第二,加密方法的安全性依赖于密钥的秘密性,而不是算法的秘密性,因此,我们没有必要确保算法的秘密性,却需要保证密钥的秘密性。对称加密系统的算法实现速度极快,从AES候选算法的测试结果看,软件实现的速度都达到了每秒数兆或数十兆比特。对称密码系统的这些特点使其有着广泛的应用。因为算法不需要保密,所以制造商可以开发出低成本的芯片以实现数据加密。这些芯片有着广泛的应用,适合于大规模生产。对称加密系统最大的问题是密钥的分发和管理非常复杂、代价高昂。比如对于具有n个用户的网络,需要n(n-1)/2个密钥,在用户群不是很大的情况下,对称加密系统是有效的。但是对于大型网络,当用户群很大并分布很广时,密钥的分配和保存就成了大问题。对称加密算法另一个缺点是不能实现数字签名。通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高数据的保密性,这正是现在金融交易网络的流行做法。公开密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。由于加密钥匙是公开的,密钥的分配和管理就很简单,比如对于具有n个用户的网络,仅需要2n个密钥。公开密钥加密系统还能够很容易地实现数字签名。因此,最适合于电子商务应用需要。在实际应用中,公开密钥加密系统并没有完全取代对称密钥加密系统,这是因为公开密钥加密系统是基于尖端的数学难题,计算非常复杂,它的安全性更高,但它的实现速度却远赶不上对称密钥加密系统。在实际应用中可利用二者各自的优点,采用对称加密系统加密文件,采用公开密钥加密系统加密“加密文件”的密钥(会话密钥),这就是混合加密系统,它较好地解决了运算速度问题和密钥分配管理问题。因此,公钥密码体制通常被用来加密关键性的、核心的机密数据,而对称密码体制通常被用来加密大量的数据。DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS第3章信息加密技术·45··45·间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。DES算法的入口参数有三个:Key、Data和Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。DES算法是这样工作的:如Mode为加密,则用Key去把数据Data进行加密,生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和
本文标题:信息加密技术
链接地址:https://www.777doc.com/doc-5527964 .html