您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 73动量及动量守恒定律习题大全(含解析答案)
1动量守恒定律习题课一、运用动量守恒定律的解题步骤1.明确研究对象,一般是两个或两个以上物体组成的系统;2.分析系统相互作用时的受力情况,判定系统动量是否守恒;3.选定正方向,确定相互作用前后两状态系统的动量;4.在同一地面参考系中建立动量守恒方程,并求解.二、碰撞1.弹性碰撞特点:系统动量守恒,机械能守恒.设质量m1的物体以速度v0与质量为m2的在水平面上静止的物体发生弹性正碰,则有动量守恒:221101vmvmvm碰撞前后动能不变:222212111210121vmvmvm所以012121vvmmmm022211vvmmm(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒)[讨论]①当ml=m2时,v1=0,v2=v0(速度互换)②当mlm2时,v1≈-v0,v2≈O(速度反向)③当mlm2时,v10,v20(同向运动)④当mlm2时,v1O,v20(反向运动)⑤当mlm2时,v1≈v,v2≈2v0(同向运动)、2.非弹性碰撞特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m1v1+m2v2=m1v1′+m2v2′机械能的损失:)()(22221211212222121121vmvmvmvmE3.完全非弹性碰撞特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒.用公式表示为:m1v1+m2v2=(m1+m2)v动能损失:221212222121121)()(vmmvmvmEk【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p甲=5kg·m/s,p乙=7kg·m/s,甲追乙并发生碰撞,碰后乙球的动量变为p乙′=10kg·m/s,则两球质量m甲与m乙的关系A.m甲=m乙B.m乙=2m甲C.m乙=4m甲D.m乙=6m甲三、平均动量守恒问题——人船模型:1.特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).对于这类问题,如果我们应用“人船模型”也会使问题迅速得到解决,现具体分析如下:【模型】如图所示,长为L、质量为M的小船停在静水中,一个质量m的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?2lv0vS〖分析〗四、“子弹打木块”模型此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹)1.“击穿”类其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动【模型1】质量为M、长为l的木块静止在光滑水平面上,现有一质量为m的子弹以水平初速度v0射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。2.“未击穿”类其特点是:在某一方向上动量守恒,如子弹有初动量而木块无初动量,碰撞时间非常短,子弹射入木块后二者以相同速度一起运动.【模型2】一质量为M的木块放在光滑的水平面上,一质量m的子弹以初速度v0水平飞来打进木块并留在其中,设相互作用力为f问题1子弹、木块相对静止时的速度v问题2子弹在木块内运动的时间t问题3子弹、木块发生的位移s1、s2以及子弹打进木块的深度s问题4系统损失的机械能、系统增加的内能0V1图1sM相S2S3动量及动量守恒定律习题大全一.动量守恒定律概述1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。2.动量守恒定律的表达形式(1),即p1p2=p1/p2/,(2)Δp1Δp2=0,Δp1=-Δp2和3.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象。(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。(3)确定过程的始、末状态,写出初动量和末动量表达式。注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。(4)建立动量守恒方程求解。4.注重动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.4二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧分析:在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到Ⅲ位位置恰好分开。(1)弹簧是完全弹性的。压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证实A、B的最终速度分别为:。(这个结论最好背下来,以后经常要用到。)(2)弹簧不是完全弹性的。压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。(3)弹簧完全没有弹性。压缩过程系统动能减少全部转化为内能,Ⅱ状态没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有分离过程。可以证实,A、B最终的共同速度为。在完全非弹性碰撞过程中,系统的动能损失最大,为:。(这个结论最好背下来,以后经常要用到。)例题:【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H和物块的最终速度v。52.子弹打木块类问题【例3】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。【例4】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?【例5】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与AB成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。6【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度;(2)滑块C离开A时的速度。答案【例1】解析:系统水平方向动量守恒,全过程机械能也守恒。在小球上升过程中,由水平方向系统动量守恒得:由系统机械能守恒得:解得全过程系统水平动量守恒,机械能守恒,得点评:本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。【例3】解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d7对子弹用动能定理:……①对木块用动能定理:……②①、②相减得:……③点评:这个式子的物理意义是:fžd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。若,则s2d。木块的位移很小。但这种运动物体与静止物体相互作用,最后共同运动的类型,全过程动能的损失量均可用公式:…④当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔEK=fžd(这里的d为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔEK的大小。【例4】解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1l2=L,∴点评:应该注重到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,8只要人最终到达船的左端,那么结论都是相同的。做这类题目,首先要画好示意图,要非凡注重两个物体相对于地面的移动方向和两个物体位移大小之间的关系。以上所列举的人、船模型的前提是系统初动量为零。假如发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1m2)v0=m1v1m2v2列式。【例5】解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m,以v0方向为正方向,【例6】分析:手雷在空中爆炸时所受合外力应是它受到的重力G=(m1m2)g,可见系统的动量并不守恒。但在爆炸瞬间,内力远大于外力时,外力可以不计,系统的动量近似守恒。设手雷原飞行方向为正方向,则整体初速度;m1=0.3kg的大块速度为m/s、m2=0.2kg的小块速度为,方向不清,暂设为正方向。由动量守恒定律:m/s此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反【例7】解析:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。设细绳与AB成θ角时小球的水平速度为v,圆环的水平速度为V,则由水平动量守恒有:MV=mv且在任意时刻或位置V与v均满足这一关系,加之时间相同,公式中的V和v可分别用其水平位移替代,则9上式可写为:Md=m[(L-Lcosθ)-d]解得圆环移动的距离:d=mL(1-cosθ)/(Mm)点评:以动量守恒定律等知识为依托,考查动量守恒条件的理解与灵活运用能力易出现的错误:(1)对动量守恒条件理解不深刻,对系统水平方向动量守恒感到怀疑,无法列出守恒方程.(2)找不出圆环与小球位移之和(L-Lcosθ)。【例8】解析:(1)由A、B系统动量守恒定律得:Mv0-mv0=(Mm)v①所以v=v0方向向右(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v′,则由动量守恒定律得:Mv0-mv0=Mv′①对板车应用动能定理得:-μmgs=mv′2-mv0
本文标题:73动量及动量守恒定律习题大全(含解析答案)
链接地址:https://www.777doc.com/doc-5535688 .html