您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > Quantum Knots and Riemann Hypothesis
1、arXiv:math/0603275v1[math.GM]12Mar2006QuantumKnotsandRiemannHypothesisSzeKuiNgDepartmentofMathematics,HongKongBaptistUniversity,HongKongszekuing@yahoo.com.hkAbstractInthispaperweproposeaquantumgaugesystemfromwhichweconstructgeneralizedWilsonloopswhichwillbeasquantumknots.Fromquantumknotswegiveaclassificationtableofknotswhereknotsareone-to-oneassignedwithanintegersuchthatprimeknotsarebijectivelyassignedwithprimenumbersandtheprimenumber2correspondstothetrefoilknot.Thenbyconsideringthequantumknotsa。
2、speriodicorbitsofthequantumsystemandbytheidentityofknotswithintegersandanapproachwhichissimilartothequantumchaosapproachofBerryandKeatingwederiveatraceformulawhichmaybecalledthevonMangoldt-Selberg-Gutzwillertraceformula.FromthistraceformulawethengiveaproofoftheRiemannHypothesis.ForourproofoftheRiemannHypothesisweshowthattheHilbert-Polyaconjectureholdsthatthereisaself-adjointoperatorforthenontrivialzerosoftheRiemannzetafunctionandthisoperatoristheVirasoroenergyoperatorwithcentralchargec=12.Ourapp。
3、roachforprovingtheRiemannHypothesiscanalsobeextendedtoprovetheExtendedRiemannHypothesis.WealsoinvestigatetherelationofourapproachforprovingtheRiemannHypothesiswiththeRandomMatrixTheoryforL-functions.MathematicsSubjectClassification:57M27,11M26,11N05,11P32.1IntroductionItiswellknownthattheJonespolynomialasaknotinvariantcanbederivedfromaquantumChern-Simongaugefieldtheory[1][2].Inspiredbythisworkinthispaperweshallalsoproposeaquantumgaugemodel.InthisquantummodelwegeneralizethewayofdefiningWilsonloopsto。
4、constructgeneralizedWilsonloopswhichwillbeasquantumknots.Fromquantumknotswegiveaclassificationtableofknotswhereknotsareone-to-oneassignedwithanintegersuchthatprimeknotsarebijectivelyassignedwithprimenumbersandtheprimenumber2correspondstothetrefoilknot.ThenbyconsideringthequantumknotsasperiodicorbitsofthequantummodelandbytheidentityofknotswithintegersandanapproachwhichissimilartothequantumchaosapproachofBerryandKeatingwederiveatraceformulawhichmaybecalledthevonMangoldt-Selberg-Gutzwillertraceformu。
5、la.FromthistraceformulawethengiveaproofoftheRiemannHypothesis[3]-[17].FromthequantumgaugemodelwefirstdefinetheclassicalWilsonloopandWilsonline.ThenfromthequantumgaugemodelwederiveadefinitionforthegeneratoroftheWilsonline.ThenwederivetwoquantumKnizhnik-Zamolodchikov(KZ)equationswhicharedualtoeachotherfortheproductofquantumWilsonlines.ThisquantumKZequationindualformmayberegardedasaquantumYang-MillequationasanalogoustotheclassicalYang-MillequationderivedfromtheclassicalYang-MilltheorysincethisquantumK。
6、Zequationisasthebasicquantumequationderivedfromthequantumgaugemodel.SolutionsofthisquantumYang-MillequationarethenusedtoconstructgeneralizedWilsonloopswhichareasquantumknots(ThesequantumknotsmayberegardedassolitonsassimilartotheinstantonsoftheclassicalYang-Millequation).InderivingthisquantumKZequationwefirstderiveaconformalfieldtheoryconsistingoftheKac-MoodyalgebraandtheVirasoroenergyoperatorandVirasoroalgebra.Thenfromthequantumknotswederiveaknotinvariant.Fromthisknotinvariantwegivetheclassificatio。
7、ntableofknots.1ThenthequantumknotsastheperiodicorbitsofthequantumgaugesystemandtheidentityofprimeknotswithprimenumbersareasthetwobasicingredientsforprovingtheRiemannHypothesis.ForourproofoftheRiemannHypothesisweshowthattheHilbert-Polyaconjectureholdsthatthereisaself-adjointoperatorforthenontrivialzerosoftheRiemannzetafunctionandthisoperatoristheVirasoroenergyoperatorwithcentralchargec=12[18]-[19].OurapproachforprovingtheRiemannHypothesiscanalsobeextendedtoprovetheExtendedRiemannHypothesis.Wealso。
8、investigatetherelationofourapproachforprovingtheRiemannHypothesiswiththeRandomMatrixTheoryforL-functions[20]-[30].Thispaperisorganizedasfollows.Insection2wegiveabriefdescriptionofaquantumgaugemodelofelectrodynamicsanditsnonabeliangeneralization.InthispaperweshallconsideranonabeliangeneralizationwithaSU(2)gaugesymmetry.Withthisquantummodelinsection3weintroducethedefinitionofclassicalWilsonloopandWilsonline.Insection4wederivethedefintionofthegeneratoroftheWilsonline.Fromthisdefinitioninsection4and5we。
9、deriveaconformalfieldtheorywhichincludestheVirasoloenegryoperatorandVirasoloalgebra,theaffineKac-MoodyalgebraandthequantumKZequationindualform.Insection6wecomputethesolutionsofthequantumKZequationindualform.Insection7wecomputethequantumWilsonlines.Insection8werepresentthebraidingoftwopiecesofcurvesbydefiningthebraidingoftwoquantumWilsonlines.Bythisrepresentationinsection10wedefinethegeneralizedWilsonloopwhichwillbeasaquantumknot.Insection9wecomputethequantumWilsonloop.Insection10wedefinegeneralizedWil。
10、sonloopswhichwillbeshowntohavepropertiesofthecorrespondingknotdiagramandwillberegardedasquantumknots.Insection11wegivesomeexamplesofgeneralizedWilsonloopsandshowthattheyhavethepropertiesofthecorrespondingknotdiagramandthusmayberegardedasquantumknots.Insection12weshowthatthisgeneralizedWilsonloopisacompletecopyofthecorrespondingknotdiagramandthuswemaycallageneralizedWilsonloopasaquantumknot.FromquantumknotswehaveaknotinvariantoftheformTrR−mW(z,z)whereW(z,z)denotesaquantumWilsonloopandRisthebraidin。
本文标题:Quantum Knots and Riemann Hypothesis
链接地址:https://www.777doc.com/doc-5536278 .html