您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 薪酬管理 > QUANTUM LOGIC AND NONCLASSICAL LOGICS
1、QUANTUMLOGICANDNONCLASSICALLOGICSGIANPIEROCATTANEO,MARIALUISADALLACHIARA,ROBERTOGIUNTINI,ANDFRANCESCOPAOLI1.IntroductionClassicallogicissometimesdescribedas\thelogicofanomniscientmindinadeterministicuniverse.Fromanintuitivepointofviewthebasicfeaturesofclassicalsemanticscanbesummarizedasfollows:1)anyproblemissemanticallydecided:foranysentence®,either®oritsnegation:®istrue(excludedmiddleprinciple);atthesametime,asentence®anditsnegation:®cannotbebothtrue(non-contradictionprinciple).2)Meaningsbehav。
2、einacompositionalway:themeaningofacompoundexpressionisdeterminedbythemeaningsofitsparts.3)Meaningsaresharpandunambiguous.Some(possiblyall)oftheseprincipleshavebeenputinquestionbydif-ferentformsofnonclassicallogic.Insomesigni¯cantcases,theobjectiveanddescriptionalnotionoftruth(whichischaracteristicofclassicallogic)hasbeenreplacedbyanepistemicconception.Accordingly,truthhasbeenidenti¯edwithwhatisknownbynon-omniscientminds,actinginauniversethatmaybeeitherdeterministicorindeterministic.The¯rstchoice。
3、iscom-patiblewiththeintuitionisticapproachestologicandtomathematics,whilethesecondchoicerepresentsthebasicassumptionofthequantumlogicalin-vestigations.Inbothcases,theclassicalnotionoftruthhasbeenreplacedbythefollowingrelation:aninformationiforcesustoassertthetruthofasentence®:Onealsobrie°ysaysthattheinformationiforces(orveri¯es)thesentence®(andoneusuallywrites:ij=®).Shouldirepresentanoncontradictoryandcompleteinformation-system,ourforcingrelationwouldnaturallycollapseintotheclassicalnotionoftrut。
4、h.However,humaninformationisgenerallyincompleteandnotnecessarilyconsistent.Asexpected,inthecaseofphysicaltheories,signi¯cantpiecesofinfor-mationcorrespondtowhatisknownbyanobserveraboutthephysicalsys-temsunderinvestigation.Inthisconnection,oneusuallyspeaksofphysicalstates(brie°y,states).Inthe\happiestsituations,astatemayrepresentamaximalknowledgeoftheobserver:apieceofinformationthatcannotKeywordsandphrases.quantumlogic,nonclassicallogics.WewarmlythankGiuseppeSergioliforhisprecioussuggestionsconce。
5、rningSection9.12G.CATTANEO,M.L.DALLACHIARA,R.GIUNTINI,ANDF.PAOLIbeconsistentlyextendedtoaricherinformation,intheframeworkofthetheory.Evenahypotheticalomniscientmindcouldnotknowmoreaboutthesysteminquestion(ifthetheoryiscorrect).Statesofthiskindareusuallycalledpurestates,bothinclassicalandinquantumphysics.Piecesofinformationthatarenotmaximalaregenerallyrepresentedbymixturesofpurestates(alsocalledmixedstates).Thereisanimportantdi®erencethatconcernsthelogicalbehaviorofclassicalandofquantumpurestates。
6、.Inclassicalmechanics,maximalityimplieslogicalcompleteness:anypurestatesemanticallydecidesanyphysicalproperty(orevent)thatmayholdforthesystemunderinvestigation(inotherwords,thestateattributestothesystemeitherthepropertyoritsnegation).Thisisinaccordancenotonlywithclassicallogic,butalsowithanumberofimportantnonclassicallogics(likeintuitionisticlogic),whereanynoncontradictoryandmaximalformalsystemislogicallycomplete.Quantumpurestates,instead,giverisetoasomewhat\mysteriousdivergencebetweenmaximality。
7、andlogicalcompleteness,whichrepresentstheoriginofmostlogicalanomaliesofthequantumworld.Althoughrepresentingamaximalinformation,aquantumpurestateisneverlogicallycomplete.ThisisaconsequenceofHeisenberg'suncertaintyprinciple,accordingtowhichtherearepairsofcomplementaryeventsthatcannotbesimultaneouslydecidedbyanypurestate.Bothinclassicalandinquantummechanics,physicalstatesarerepre-sentedbyspecialkindsofmathematicalobjects.Inclassicalmechanics(CM),apurestateofasingleparticlecanberepresentedbyasequenc。
8、eofsixrealnumbers(r1;:::;r6),wherethe¯rstthreenumberscorrespondtotheposition-coordinates,whilethelastonesarethemomentum-components.ThesetIR6ofallsextuplesofrealnumbersrepresentsthephase-spacefortheparticleinquestion.Similarlyforthecaseofcompoundsystems,con-sistingofa¯nitenumbernofparticles.Hence,anypurestateofaclassicalparticle-systemisrepresentedbyapointofanappropriatephasespace§.Howtorepresentthephysicaleventsthatmayoccurtoagivenparticle?Followingthestandardideasofclassical(extensional)semanti。
9、cs,itisquitenaturaltoassumethatthesucheventsaremathematicallyrepresentedbysuitablesubsetsof§.Whataboutthestructureofallevents?Asiswellknown,thepowersetofanysetgivesrisetoaBooleanalgebra.AndalsothesetF(§)ofallmeasurablesubsetsof§(whichismoretractablethanthefullpowersetof§,fromameasure-theoreticpointofview)turnsouttohaveaBooleanstructure.Hence,wemayrefertothefollowingBoolean¯eldofsets:EVC=hF(§);\;[;c;;;§)i;wheretheset-theoreticoperations\;[;crepresentrespectivelytheconjunc-tion,thedisjunctionandth。
10、enegationofclassicalevents.Asaconsequence,thelogicofCMturnsouttobeinperfectagreementwithclassicallogic.Furthermore,purestatesarelogicallycomplete:foranyQUANTUMLOGIC3pointpofthephase-space§andforanyeventEinF(§),eitherp2Eorp2Ec.Whathappensinthecaseofquantumtheory(QT)?Asopposedtoclassi-calmechanics,QTisessentiallyprobabilistic.Apurestategenerallyassignstoaquantumeventaprobability-value(arealnumberintheinterval[0;1]).Asaconsequence,aquantumeventmaybesemanticallyindeterminateforagivenpurestate,andthee。
本文标题:QUANTUM LOGIC AND NONCLASSICAL LOGICS
链接地址:https://www.777doc.com/doc-5536279 .html